These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33221657)

  • 1. Prediction of liquid chromatographic retention time using quantitative structure-retention relationships to assist non-targeted identification of unknown metabolites of phthalates in human urine with high-resolution mass spectrometry.
    Meshref S; Li Y; Feng YL
    J Chromatogr A; 2020 Dec; 1634():461691. PubMed ID: 33221657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.
    Zhang Q; Huo M; Zhang Y; Qiao Y; Gao X
    J Chromatogr A; 2018 Jun; 1552():17-28. PubMed ID: 29650478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure.
    Guo Z; Huang S; Wang J; Feng YL
    Talanta; 2020 Nov; 219():121339. PubMed ID: 32887069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination and separation of bisphenol A, phthalate metabolites and structural isomers of parabens in human urine with conventional high-pressure liquid chromatography combined with electrospray ionisation tandem mass spectrometry.
    Myridakis A; Balaska E; Gkaitatzi C; Kouvarakis A; Stephanou EG
    Anal Bioanal Chem; 2015 Mar; 407(9):2509-18. PubMed ID: 25644523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of total phthalates in urine by isotope-dilution liquid chromatography-tandem mass spectrometry.
    Kato K; Silva MJ; Needham LL; Calafat AM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Jan; 814(2):355-60. PubMed ID: 15639459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, automated online SPE-LC-QTRAP-MS/MS method for the simultaneous analysis of 14 phthalate metabolites and 5 bisphenol analogues in human urine.
    Heffernan AL; Thompson K; Eaglesham G; Vijayasarathy S; Mueller JF; Sly PD; Gomez MJ
    Talanta; 2016 May; 151():224-233. PubMed ID: 26946031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of seven phthalate metabolites in human urine by high performance liquid chromatography-tandem mass spectrometry].
    Gao H; Xu Y; Sun L; Jin Z; Hu H; Sheng J; Ren L; Tao F
    Se Pu; 2015 Jun; 33(6):622-7. PubMed ID: 26536765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of ultra-high performance liquid and gas chromatography coupled to mass spectrometry for accurate determination of primary and secondary phthalate metabolites in urine samples.
    Herrero L; Calvarro S; Fernández MA; Quintanilla-López JE; González MJ; Gómara B
    Anal Chim Acta; 2015 Jan; 853():625-636. PubMed ID: 25467512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-ion intensity relationship strategy to the prediction of absolute levels without authentic standards.
    Wu L; Wu Y; Shen H; Gong P; Cao L; Wang G; Hao H
    Anal Chim Acta; 2013 Sep; 794():67-75. PubMed ID: 23972977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical method for the sensitive determination of major di-(2-propylheptyl)-phthalate metabolites in human urine.
    Gries W; Ellrich D; Küpper K; Ladermann B; Leng G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Nov; 908():128-36. PubMed ID: 23040987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry.
    Kato K; Silva MJ; Needham LL; Calafat AM
    Anal Chem; 2005 May; 77(9):2985-91. PubMed ID: 15859620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pesticide retention time in reversed-phase liquid chromatography using quantitative-structure retention relationship models: A comparative study of seven molecular descriptors datasets.
    Parinet J
    Chemosphere; 2021 Jul; 275():130036. PubMed ID: 33676277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of data acquisition modes and data analysis approaches on non-targeted analysis of phthalate metabolites in human urine.
    Feng YL; Baesu A
    Anal Bioanal Chem; 2023 Jan; 415(2):303-316. PubMed ID: 36346455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra high pressure liquid chromatography tandem mass spectrometry.
    Dewalque L; Pirard C; Dubois N; Charlier C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Feb; 949-950():37-47. PubMed ID: 24463399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streamlined MRM method transfer between instruments assisted with HRMS matching and retention-time prediction.
    Yang JJ; Han Y; Mah CH; Wanjaya E; Peng B; Xu TF; Liu M; Huan T; Fang ML
    Anal Chim Acta; 2020 Mar; 1100():88-96. PubMed ID: 31987156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and sensitive determination of 10 forbidden phthalates in perfumes by ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry.
    Wei XB; Li RQ; Yu H; Wang RQ
    J Chromatogr A; 2018 Nov; 1578():45-52. PubMed ID: 30343818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary biomarkers of di-isononyl phthalate in rats.
    Silva MJ; Kato K; Wolf C; Samandar E; Silva SS; Gray EL; Needham LL; Calafat AM
    Toxicology; 2006 Jun; 223(1-2):101-12. PubMed ID: 16697098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved structural annotation of triterpene metabolites of traditional Chinese medicine in vivo based on quantitative structure-retention relationships combined with characteristic ions: Alismatis Rhizoma as an example.
    Yan P; Wang L; Li S; Liu X; Sun Y; Tao J; Ouyang H; Zhang J; Du Z; Jiang H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Dec; 1187():123012. PubMed ID: 34768050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.