These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33221697)

  • 21. pH-Responsive Mechanistic Switch Regulates the Formation of Dendritic and Fibrillar Nanostructures of a Functional Amyloid.
    Dogra P; Bhattacharya M; Mukhopadhyay S
    J Phys Chem B; 2017 Jan; 121(2):412-419. PubMed ID: 28005369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation.
    Bhasne K; Mukhopadhyay S
    Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Engineering Reveals Mechanisms of Functional Amyloid Formation in Pseudomonas aeruginosa Biofilms.
    Bleem A; Christiansen G; Madsen DJ; Maric H; Strømgaard K; Bryers JD; Daggett V; Meyer RL; Otzen DE
    J Mol Biol; 2018 Oct; 430(20):3751-3763. PubMed ID: 29964047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Associative Memory, Water Mediated, Structure and Energy Model (AWSEM)-Amylometer: Predicting Amyloid Propensity and Fibril Topology Using an Optimized Folding Landscape Model.
    Chen M; Schafer NP; Zheng W; Wolynes PG
    ACS Chem Neurosci; 2018 May; 9(5):1027-1039. PubMed ID: 29241326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interrogating Amyloid Aggregates using Fluorescent Probes.
    Aliyan A; Cook NP; Martí AA
    Chem Rev; 2019 Dec; 119(23):11819-11856. PubMed ID: 31675223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The intrinsic amyloidogenic propensity of cofilin-1 is aggravated by Cys-80 oxidation: A possible link with neurodegenerative diseases.
    Kaushik V; Brünnert D; Hanschmann EM; Sharma PK; Anand BG; Kar K; Kateriya S; Goyal P
    Biochem Biophys Res Commun; 2021 Sep; 569():187-192. PubMed ID: 34256187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly.
    Luo XD; Kong FL; Dang HB; Chen J; Liang Y
    Biochim Biophys Acta; 2016 Nov; 1864(11):1609-19. PubMed ID: 27481166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation.
    Zaman M; Khan AN; Wahiduzzaman ; Zakariya SM; Khan RH
    Int J Biol Macromol; 2019 Aug; 134():1022-1037. PubMed ID: 31128177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin and Lispro Insulin: What is Common and Different in their Behavior?
    Selivanova OM; Suvorina MY; Surin AK; Dovidchenko NV; Galzitskaya OV
    Curr Protein Pept Sci; 2017; 18(1):57-64. PubMed ID: 27226198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases.
    Li D; Liu C
    Nat Rev Neurosci; 2022 Sep; 23(9):523-534. PubMed ID: 35637417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides.
    Jean L; Foley AC; Vaux DJT
    Biomolecules; 2017 Sep; 7(4):. PubMed ID: 28937634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation.
    Luo F; Gui X; Zhou H; Gu J; Li Y; Liu X; Zhao M; Li D; Li X; Liu C
    Nat Struct Mol Biol; 2018 Apr; 25(4):341-346. PubMed ID: 29610493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of inositol stereoisomers to model amyloidogenic peptides.
    Li G; Rauscher S; Baud S; Pomès R
    J Phys Chem B; 2012 Jan; 116(3):1111-9. PubMed ID: 22091989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amyloidogenicity of p53: a hidden link between protein misfolding and cancer.
    Gong H; Yang X; Zhao Y; Petersen RB; Liu X; Liu Y; Huang K
    Curr Protein Pept Sci; 2015; 16(2):135-46. PubMed ID: 25692950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets.
    Karunarathne K; Bushra N; Williams O; Raza I; Tirado L; Fakhre D; Fakhre F; Muschol M
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Structural View of αB-crystallin Assembly and Amyloid Aggregation.
    Liu Z; Zhang S; Li D; Liu C
    Protein Pept Lett; 2017; 24(4):315-321. PubMed ID: 28176658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of self-templating catalytic amyloids.
    Rout SK; Rhyner D; Greenwald J; Riek R
    Methods Enzymol; 2024; 697():51-75. PubMed ID: 38816135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality.
    Buchanan JA; Varghese NR; Johnston CL; Sunde M
    J Mol Biol; 2023 Jun; 435(11):167919. PubMed ID: 37330295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amyloids and Amyloid-like Protein Aggregates in Foods: Challenges and New Perspectives.
    Malik S; Yadav JK
    Curr Protein Pept Sci; 2023; 24(5):393-403. PubMed ID: 36600621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gallic acid oxidation products alter the formation pathway of insulin amyloid fibrils.
    Sakalauskas A; Ziaunys M; Smirnovas V
    Sci Rep; 2020 Sep; 10(1):14466. PubMed ID: 32879381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.