BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33221864)

  • 1. The development of a flexible heart model for simulation-based training.
    Man J; Maessen J; Sardari Nia P
    Interact Cardiovasc Thorac Surg; 2021 Jan; 32(2):182-187. PubMed ID: 33221864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement.
    Ripley B; Kelil T; Cheezum MK; Goncalves A; Di Carli MF; Rybicki FJ; Steigner M; Mitsouras D; Blankstein R
    J Cardiovasc Comput Tomogr; 2016; 10(1):28-36. PubMed ID: 26732862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced three-dimensionally engineered simulation model for aortic valve and proximal aorta procedures.
    Russo M; Koenigshofer M; Stoiber M; Werner P; Gross C; Kocher A; Laufer G; Moscato F; Andreas M
    Interact Cardiovasc Thorac Surg; 2020 Jun; 30(6):887-895. PubMed ID: 32285105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-procedural fit-testing of TAVR valves using parametric modeling and 3D printing.
    Hosny A; Dilley JD; Kelil T; Mathur M; Dean MN; Weaver JC; Ripley B
    J Cardiovasc Comput Tomogr; 2019; 13(1):21-30. PubMed ID: 30322772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.
    Scanlan AB; Nguyen AV; Ilina A; Lasso A; Cripe L; Jegatheeswaran A; Silvestro E; McGowan FX; Mascio CE; Fuller S; Spray TL; Cohen MS; Fichtinger G; Jolley MA
    Pediatr Cardiol; 2018 Mar; 39(3):538-547. PubMed ID: 29181795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.
    Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N
    World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Printing of Life-Like Models for Simulation and Training of Minimally Invasive Cardiac Surgery.
    Yamada T; Osako M; Uchimuro T; Yoon R; Morikawa T; Sugimoto M; Suda H; Shimizu H
    Innovations (Phila); 2017; 12(6):459-465. PubMed ID: 29232300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of a Right Anterior Thoracotomy Access for Aortic Valve Replacement Using a 3D Printed Model.
    Wamala I; Brüning J; Dittmann J; Jerichow S; Weinhold J; Goubergritis L; Hennemuth A; Falk V; Kempfert J
    Innovations (Phila); 2019 Oct; 14(5):428-435. PubMed ID: 31431151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing.
    Qian Z; Wang K; Liu S; Zhou X; Rajagopal V; Meduri C; Kauten JR; Chang YH; Wu C; Zhang C; Wang B; Vannan MA
    JACC Cardiovasc Imaging; 2017 Jul; 10(7):719-731. PubMed ID: 28683947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to obtain a 3D printed model of renal cell carcinoma (RCC) with venous tumor thrombus extension (VTE) for surgical simulation (phase I NCT03738488).
    Rivero Belenchón I; Congregado Ruíz CB; Gómez Ciriza G; Gómez Dos Santos V; Rivas González JA; Gálvez García C; González Gordaliza MC; Osmán García I; Conde Sánchez JM; Burgos Revilla FJ; Medina López RA
    Updates Surg; 2020 Dec; 72(4):1237-1246. PubMed ID: 32488822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing for assessment of paravalvular leak in transcatheter aortic valve implantation.
    Thorburn C; Abdel-Razek O; Fagan S; Pearce N; Furey M; Harris S; Bartellas M; Adams C
    J Cardiothorac Surg; 2020 Aug; 15(1):211. PubMed ID: 32758268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications.
    Calleja A; Thavendiranathan P; Ionasec RI; Houle H; Liu S; Voigt I; Sai Sudhakar C; Crestanello J; Ryan T; Vannan MA
    Circ Cardiovasc Imaging; 2013 Jan; 6(1):99-108. PubMed ID: 23233743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair.
    Daemen JHT; Heuts S; Olsthoorn JR; Maessen JG; Sardari Nia P
    Eur J Cardiothorac Surg; 2019 Mar; 55(3):543-551. PubMed ID: 30202862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicone models of the aortic root to plan and simulate interventions.
    Lezhnev AA; Ryabtsev DV; Hamanturov DB; Barskiy VI; Yatsyk SP
    Interact Cardiovasc Thorac Surg; 2020 Aug; 31(2):204-209. PubMed ID: 32463865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed aortic stenosis model with fragile and crushable calcifications for off-the-job training and surgical simulation.
    Shirakawa T; Yoshitatsu M; Koyama Y; Mizoguchi H; Toda K; Sawa Y
    Multimed Man Cardiothorac Surg; 2018 May; 2018():. PubMed ID: 29781590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic Vascular Replicator for TAVR Procedures.
    Rotman OM; Kovarovic B; Sadasivan C; Gruberg L; Lieber BB; Bluestein D
    Cardiovasc Eng Technol; 2018 Sep; 9(3):339-350. PubMed ID: 29654509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery].
    Király L
    Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification.
    El Sabbagh A; Eleid MF; Matsumoto JM; Anavekar NS; Al-Hijji MA; Said SM; Nkomo VT; Holmes DR; Rihal CS; Foley TA
    Catheter Cardiovasc Interv; 2018 Dec; 92(7):E537-E549. PubMed ID: 29359388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use.
    Perens G; Chyu J; McHenry K; Yoshida T; Finn JP
    World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training.
    Grab M; Hopfner C; Gesenhues A; König F; Haas NA; Hagl C; Curta A; Thierfelder N
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.