These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 3322198)

  • 1. Effect of pH on tritium exchange and hydrogen production and uptake in free-living cells and in bacteroids of Bradyrhizobium japonicum.
    Barate M; Reyes P; Munilla R; Fernández VM; Ballesteros A; Ruiz-Argüeso T
    Arch Biochem Biophys; 1987 Dec; 259(2):639-44. PubMed ID: 3322198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH dependence of proton-deuterium exchange, hydrogen production and uptake catalyzed by hydrogenases from sulfate-reducing bacteria.
    Lespinat PA; Berlier Y; Fauque G; Czechowski M; Dimon B; Le Gall J
    Biochimie; 1986 Jan; 68(1):55-61. PubMed ID: 3015249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogen-tritium exchange activity of Megasphaera elsdenii hydrogenase.
    Doherty GM; Mayhew SG
    Eur J Biochem; 1992 Apr; 205(1):117-26. PubMed ID: 1555573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by iodoacetamide and acetylene of the H-D-exchange reaction catalyzed by Thiocapsa roseopersicina hydrogenase.
    Zorin NA; Dimon B; Gagnon J; Gaillard J; Carrier P; Vignais PM
    Eur J Biochem; 1996 Oct; 241(2):675-81. PubMed ID: 8917471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules.
    Arp DJ; Burris RH
    Biochim Biophys Acta; 1979 Oct; 570(2):221-30. PubMed ID: 40601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction.
    Vignais PM; Dimon B; Zorin NA; Colbeau A; Elsen S
    J Bacteriol; 1997 Jan; 179(1):290-2. PubMed ID: 8982013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of the hydrogen-oxidizing hydrogenase from soybean nodule bacteroids.
    Arp DJ; Burris RH
    Biochemistry; 1981 Apr; 20(8):2234-40. PubMed ID: 7016176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogen-oxidizing bacterium Hydrogenovibrio marinus.
    Nishihara H; Miyashita Y; Aoyama K; Kodama T; Igarashi Y; Takamura Y
    Biochem Biophys Res Commun; 1997 Mar; 232(3):766-70. PubMed ID: 9126351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
    Eisbrenner G; Evans HJ
    J Bacteriol; 1982 Mar; 149(3):1005-12. PubMed ID: 6277845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase.
    Ferber DM; Maier RJ
    FEMS Microbiol Lett; 1993 Jul; 110(3):257-64. PubMed ID: 8354459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.
    Maier RJ; Merberg DM
    J Bacteriol; 1982 Apr; 150(1):161-7. PubMed ID: 6277861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of isotope exchange, H2 evolution, and H2 oxidation activities of Azotobacter vinelandii hydrogenase.
    McTavish H; Sayavedra-Soto LA; Arp DJ
    Biochim Biophys Acta; 1996 May; 1294(2):183-90. PubMed ID: 8645737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Participation of hyf-encoded hydrogenase 4 in molecular hydrogen release coupled with proton-potassium exchange in Escherichia coli.
    Bagramyan K; Vassilian A; Mnatsakanyan N; Trchounian A
    Membr Cell Biol; 2001; 14(6):749-63. PubMed ID: 11817571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15.
    Xiao Y; Zhang X; Zhu M; Tan W
    Bioresour Technol; 2013 Jun; 137():9-17. PubMed ID: 23584405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii.
    Pihl TD; Schicho RN; Kelly RM; Maier RJ
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):138-41. PubMed ID: 2492097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen.
    Kim H; Yu C; Maier RJ
    J Bacteriol; 1991 Jul; 173(13):3993-9. PubMed ID: 2061281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli.
    Pinske C; Jaroschinsky M; Linek S; Kelly CL; Sargent F; Sawers RG
    J Bacteriol; 2015 Jan; 197(2):296-306. PubMed ID: 25368299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of soluble hydrogenase from the cyanobacterium Anabaena cylindrica.
    Ewart GD; Smith GD
    Arch Biochem Biophys; 1989 Jan; 268(1):327-37. PubMed ID: 2492182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves.
    Klucas RV; Hanus FJ; Russell SA; Evans HJ
    Proc Natl Acad Sci U S A; 1983 Apr; 80(8):2253-7. PubMed ID: 16578770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.