These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33221982)

  • 1. Interplay between differential competition and actions of spore-vectors explain host exclusivity of saprobic fungi in Protea flowers.
    Mukwevho VO; Dreyer LL; Roets F
    Antonie Van Leeuwenhoek; 2020 Dec; 113(12):2187-2200. PubMed ID: 33221982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of ecologically similar fungi in a restricted floral niche.
    Mukwevho VO; Dreyer LL; Roets F
    Antonie Van Leeuwenhoek; 2022 Jun; 115(6):761-771. PubMed ID: 35389142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early colonization of Protea flowers enable dominance of competitively weak saprobic fungi in seed cones, benefitting their hosts.
    Mukwevho VO; Dreyer LL; Roets F
    Fungal Biol; 2022 Feb; 126(2):122-131. PubMed ID: 35078583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knoxdaviesia proteae is not the only Knoxdaviesia-symbiont of Protea repens.
    Aylward J; Dreyer LL; Steenkamp ET; Wingfield MJ; Roets F
    IMA Fungus; 2015 Dec; 6(2):471-6. PubMed ID: 26734549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic and abiotic constraints that facilitate host exclusivity of Gondwanamyces and Ophiostoma on Protea.
    Roets F; Theron N; Wingfield MJ; Dreyer LL
    Fungal Biol; 2012 Jan; 116(1):49-61. PubMed ID: 22208601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome sequences of Knoxdaviesia capensis and K. proteae (Fungi: Ascomycota) from Protea trees in South Africa.
    Aylward J; Steenkamp ET; Dreyer LL; Roets F; Wingfield BD; Wingfield MJ
    Stand Genomic Sci; 2016; 11():22. PubMed ID: 26933475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic overview of closely related fungi with different Protea host ranges.
    Aylward J; Wingfield BD; Dreyer LL; Roets F; Wingfield MJ; Steenkamp ET
    Fungal Biol; 2018 Dec; 122(12):1201-1214. PubMed ID: 30449358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birds Mediate a Fungus-Mite Mutualism.
    Theron-De Bruin N; Dreyer LL; Ueckermann EA; Wingfield MJ; Roets F
    Microb Ecol; 2018 May; 75(4):863-874. PubMed ID: 29071368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity and ecology of flower-associated actinomycetes in different flowering stages of Protea repens.
    Human ZR; Crous CJ; Roets F; Venter SN; Wingfield MJ; de Beer ZW
    Antonie Van Leeuwenhoek; 2018 Feb; 111(2):209-226. PubMed ID: 28936706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic basis for high population diversity in Protea-associated Knoxdaviesia.
    Aylward J; Steenkamp ET; Dreyer LL; Roets F; Wingfield MJ; Wingfield BD
    Fungal Genet Biol; 2016 Nov; 96():47-57. PubMed ID: 27720822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Panmixia defines the genetic diversity of a unique arthropod-dispersed fungus specific to Protea flowers.
    Aylward J; Dreyer LL; Steenkamp ET; Wingfield MJ; Roets F
    Ecol Evol; 2014 Sep; 4(17):3444-55. PubMed ID: 25535560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance dispersal and recolonization of a fire-destroyed niche by a mite-associated fungus.
    Aylward J; Dreyer LL; Steenkamp ET; Wingfield MJ; Roets F
    Fungal Biol; 2015 Apr; 119(4):245-56. PubMed ID: 25813511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mites are the most common vectors of the fungus Gondwanamyces proteae in Protea infructescences.
    Roets F; Wingfield MJ; Wingfield BD; Dreyer LL
    Fungal Biol; 2011; 115(4-5):343-50. PubMed ID: 21530916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa.
    Roets F; de Beer ZW; Wingfield MJ; Crous PW; Dreyer LL
    Mycologia; 2008; 100(3):496-510. PubMed ID: 18751556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp.
    Roets F; Crous PW; Wingfield MJ; Dreyer LL
    Environ Entomol; 2009 Feb; 38(1):143-52. PubMed ID: 19791608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two new Sporothrix species from Protea flower heads in South African Grassland and Savanna.
    Ngubane NP; Dreyer LL; Oberlander KC; Roets F
    Antonie Van Leeuwenhoek; 2018 Jun; 111(6):965-979. PubMed ID: 29214366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal pathogens of Proteaceae.
    Crous PW; Summerell BA; Swart L; Denman S; Taylor JE; Bezuidenhout CM; Palm ME; Marincowitz S; Groenewald JZ
    Persoonia; 2011 Dec; 27():20-45. PubMed ID: 22403475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of fungus-mite mutualism in a unique niche.
    Roets F; Wingfield MJ; Crous PW; Dreyer LL
    Environ Entomol; 2007 Oct; 36(5):1226-37. PubMed ID: 18284748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New species of Anthostomella on fynbos, with a key to the genus in South Africa.
    Lee S; Crous PW
    Mycol Res; 2003 Mar; 107(Pt 3):360-70. PubMed ID: 12825505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft genome sequences of five
    Liu F; Chen S; Ferreira MA; Chang R; Sayari M; Kanzi AM; Wingfield BD; Wingfield MJ; Pizarro D; Crespo A; Divakar PK; de Beer ZW; Duong TA
    IMA Fungus; 2019; 10():22. PubMed ID: 32647626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.