BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33222144)

  • 1. Spatial and Temporal Aspects of Exocytosis Studied on the Isolated Plasma Membranes.
    Milosevic I
    Methods Mol Biol; 2021; 2233():311-325. PubMed ID: 33222144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
    Chang CW; Hui E; Bai J; Bruns D; Chapman ER; Jackson MB
    J Neurosci; 2015 Apr; 35(14):5772-80. PubMed ID: 25855187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of Compensatory Endocytosis by Antibody Internalization and Quantification of Endocytic Vesicle Distribution in Adrenal Chromaffin Cells.
    Ceridono M; Chasserot-Golaz S; Vitale N; Gasman S; Ory S
    Methods Mol Biol; 2021; 2233():43-51. PubMed ID: 33222126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells.
    Pinheiro PS; Jansen AM; de Wit H; Tawfik B; Madsen KL; Verhage M; Gether U; Sørensen JB
    J Neurosci; 2014 Aug; 34(32):10688-700. PubMed ID: 25100601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of attachment process of dense-core vesicles to the plasma membrane in neuroendocrine cells.
    Tsuboi T
    Neurosci Res; 2009 Feb; 63(2):83-8. PubMed ID: 19059288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells.
    Cárdenas AM; Marengo FD
    J Neurochem; 2016 Jun; 137(6):867-79. PubMed ID: 26849771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of Helix 12 in Munc18-1 Induces Vesicle Priming.
    Munch AS; Kedar GH; van Weering JR; Vazquez-Sanchez S; He E; André T; Braun T; Söllner TH; Verhage M; Sørensen JB
    J Neurosci; 2016 Jun; 36(26):6881-91. PubMed ID: 27358447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells.
    Shin W; Wei L; Arpino G; Ge L; Guo X; Chan CY; Hamid E; Shupliakov O; Bleck CKE; Wu LG
    Neuron; 2021 Oct; 109(19):3119-3134.e5. PubMed ID: 34411513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention Using Selective Hooks-Synchronized Secretion to Measure Local Exocytosis.
    Boncompain G; Fourriere L; Gareil N; Perez F
    Methods Mol Biol; 2021; 2233():253-264. PubMed ID: 33222140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of large dense core vesicles in mouse chromaffin cells.
    Dembla E; Becherer U
    Traffic; 2021 Mar; 22(3):78-93. PubMed ID: 33369005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of calcium-mediated exocytosis of dense-core vesicles.
    Kreutzberger AJB; Kiessling V; Liang B; Seelheim P; Jakhanwal S; Jahn R; Castle JD; Tamm LK
    Sci Adv; 2017 Jul; 3(7):e1603208. PubMed ID: 28776026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exocytosis studies in a chromaffin cell-free system: imaging of single-vesicle exocytosis in a chromaffin cell-free system using total internal reflection fluorescence microscopy.
    Wiegand UK; Don-Wauchope A; Matskevich I; Duncan RR; Greaves J; Shipston MJ; Apps DK; Chow RH
    Ann N Y Acad Sci; 2002 Oct; 971():257-61. PubMed ID: 12438128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.
    Tian JH; Wu ZX; Unzicker M; Lu L; Cai Q; Li C; Schirra C; Matti U; Stevens D; Deng C; Rettig J; Sheng ZH
    J Neurosci; 2005 Nov; 25(45):10546-55. PubMed ID: 16280592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23.
    Sørensen JB; Nagy G; Varoqueaux F; Nehring RB; Brose N; Wilson MC; Neher E
    Cell; 2003 Jul; 114(1):75-86. PubMed ID: 12859899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells.
    Hugo S; Dembla E; Halimani M; Matti U; Rettig J; Becherer U
    J Neurosci; 2013 Oct; 33(43):17123-37. PubMed ID: 24155316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis.
    Umbrecht-Jenck E; Demais V; Calco V; Bailly Y; Bader MF; Chasserot-Golaz S
    Traffic; 2010 Jul; 11(7):958-71. PubMed ID: 20374557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective recapture of secretory granule components after full collapse exocytosis in neuroendocrine chromaffin cells.
    Ceridono M; Ory S; Momboisse F; Chasserot-Golaz S; Houy S; Calco V; Haeberlé AM; Demais V; Bailly Y; Bader MF; Gasman S
    Traffic; 2011 Jan; 12(1):72-88. PubMed ID: 20880191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles.
    Chasserot-Golaz S; Vitale N; Umbrecht-Jenck E; Knight D; Gerke V; Bader MF
    Mol Biol Cell; 2005 Mar; 16(3):1108-19. PubMed ID: 15635098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docked secretory vesicles undergo Ca2+-activated exocytosis in a cell-free system.
    Martin TF; Kowalchyk JA
    J Biol Chem; 1997 May; 272(22):14447-53. PubMed ID: 9162085
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.