BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33223289)

  • 21. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry.
    Bánáti H; Darvas B; Fehér-Tóth S; Czéh Á; Székács A
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28241411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Guiboutia species by NIR-HSI spectroscopy.
    Xue X; Chen Z; Wu H; Gao H
    Sci Rep; 2022 Jul; 12(1):11507. PubMed ID: 35798833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis.
    Lim J; Kim G; Mo C; Oh K; Yoo H; Ham H; Kim MS
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28974012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of fiber added to semolina by near infrared (NIR) spectral techniques.
    Badaró AT; Morimitsu FL; Ferreira AR; Clerici MTPS; Fernandes Barbin D
    Food Chem; 2019 Aug; 289():195-203. PubMed ID: 30955603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples.
    Peltomaa R; Vaghini S; Patiño B; Benito-Peña E; Moreno-Bondi MC
    Anal Chim Acta; 2016 Sep; 935():231-8. PubMed ID: 27543032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging.
    Wang W; Heitschmidt GW; Windham WR; Feldner P; Ni X; Chu X
    J Food Sci; 2015 Jan; 80(1):M116-22. PubMed ID: 25495222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth characteristics of three Fusarium species evaluated by near-infrared hyperspectral imaging and multivariate image analysis.
    Williams PJ; Geladi P; Britz TJ; Manley M
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):803-13. PubMed ID: 22961391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence of Mycotoxigenic
    Gromadzka K; Błaszczyk L; Chełkowski J; Waśkiewicz A
    Toxins (Basel); 2019 Apr; 11(4):. PubMed ID: 30991649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of white maize defects with multispectral imaging.
    Sendin K; Manley M; Williams PJ
    Food Chem; 2018 Mar; 243():311-318. PubMed ID: 29146343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of oat and groat kernels using NIR hyperspectral imaging.
    Serranti S; Cesare D; Marini F; Bonifazi G
    Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occurrence of Fusarium species and mycotoxins in nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels.
    Desjardins AE; Manandhar G; Plattner RD; Maragos CM; Shrestha K; McCormick SP
    J Agric Food Chem; 2000 Apr; 48(4):1377-83. PubMed ID: 10775401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins.
    Blandino M; Scarpino V; Vanara F; Sulyok M; Krska R; Reyneri A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):533-43. PubMed ID: 25266165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.
    Oldenburg E; Höppner F; Ellner F; Weinert J
    Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize.
    Szabo B; Toth B; Toth Toldine E; Varga M; Kovacs N; Varga J; Kocsube S; Palagyi A; Bagi F; Budakov D; Stojšin V; Lazić S; Bodroža-Solarov M; Čolović R; Bekavac G; Purar B; Jocković D; Mesterházy A
    Toxins (Basel); 2018 Sep; 10(9):. PubMed ID: 30217025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fusaria and fumonisins in maize from Ghana and their co-occurrence with aflatoxins.
    Kpodo K; Thrane U; Hald B
    Int J Food Microbiol; 2000 Nov; 61(2-3):147-57. PubMed ID: 11078165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia.
    Mukanga M; Derera J; Tongoona P; Laing MD
    Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil.
    Barroso VM; Rocha LO; Reis TA; Reis GM; Duarte AP; Michelotto MD; Correa B
    Mycotoxin Res; 2017 May; 33(2):121-127. PubMed ID: 28265970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains.
    Sánchez-Rangel D; SanJuan-Badillo A; Plasencia J
    J Agric Food Chem; 2005 Nov; 53(22):8565-71. PubMed ID: 16248554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol of Fusarium verticillioides and Other Endophytic Fungal Species?
    Bacon CW; Hinton DM; Mitchell TR
    J Agric Food Chem; 2017 Aug; 65(33):7071-7080. PubMed ID: 27958725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.