BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33223296)

  • 1. Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics.
    Tian W; Chen G; Zhang G; Wang D; Tilley M; Li Y
    Food Chem; 2021 May; 344():128633. PubMed ID: 33223296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique.
    Liu YI; Sun L; Ran Z; Pan X; Zhou S; Liu S
    J Food Prot; 2019 Oct; 82(10):1655-1662. PubMed ID: 31526188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration.
    De Girolamo A; Arroyo MC; Lippolis V; Cervellieri S; Cortese M; Pascale M; Logrieco AF; von Holst C
    Food Chem; 2020 Dec; 333():127449. PubMed ID: 32659663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research on the quantitative determination of lime in wheat flour by near-infrared spectroscopy].
    Wang D; Ma ZH; Pan LG; Han P; Zhao L; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):69-73. PubMed ID: 23586227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.
    Delwiche SR; Reeves JB
    Appl Spectrosc; 2010 Jan; 64(1):73-82. PubMed ID: 20132601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fast determination of mineral elements in wheat flour by near-infrared spectroscopy].
    Gao H; Wang G; Wang Z
    Wei Sheng Yan Jiu; 2021 May; 50(3):495-500. PubMed ID: 34074375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat.
    Zhao H; Guo B; Wei Y; Zhang B
    Food Chem; 2013 Jun; 138(2-3):1902-7. PubMed ID: 23411323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Detection of benzoyl peroxide in wheat flour by NIR diffuse reflectance spectroscopy technique].
    Zhang ZY; Li G; Liu HX; Lin L; Zhang BJ; Wu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Dec; 31(12):3260-3. PubMed ID: 22295772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour.
    Che W; Sun L; Zhang Q; Zhang D; Ye D; Tan W; Wang L; Dai C
    J Food Sci; 2017 Oct; 82(10):2516-2525. PubMed ID: 28892170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting micronutrients of wheat using hyperspectral imaging.
    Hu N; Li W; Du C; Zhang Z; Gao Y; Sun Z; Yang L; Yu K; Zhang Y; Wang Z
    Food Chem; 2021 May; 343():128473. PubMed ID: 33160768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility study on quantification and authentication of the cassava starch content in wheat flour for bread-making using NIR spectroscopy and digital images.
    Duarte ESA; de Almeida VE; da Costa GB; de Araújo MCU; Véras G; Diniz PHGD; Fernandes DDS
    Food Chem; 2022 Jan; 368():130843. PubMed ID: 34418692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR.
    Chen J; Zhu S; Zhao G
    Food Chem; 2017 Apr; 221():1939-1946. PubMed ID: 27979183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics.
    González-Martín MI; Wells Moncada G; González-Pérez C; Zapata San Martín N; López-González F; Lobos Ortega I; Hernández-Hierro JM
    Food Chem; 2014 Feb; 145():802-6. PubMed ID: 24128548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct qualitative and quantitative determination methodology for massive screening of DON in wheat flour based on multi-molecular infrared spectroscopy (MM-IR) with 2T-2DCOS.
    Li FL; Xie J; Wang S; Wang Y; Xu CH
    Talanta; 2021 Nov; 234():122653. PubMed ID: 34364462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric Drive Supervisor for Milling Process 4.0 Automation: A Process Analytical Approach with IIoT NIR Devices for Common Wheat.
    Grassi S; Marti A; Cascella D; Casalino S; Cascella GL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of gluten in wheat flour by FT-Raman spectroscopy.
    Czaja T; Mazurek S; Szostak R
    Food Chem; 2016 Nov; 211():560-3. PubMed ID: 27283667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry.
    Tyska D; Mallmann A; Gressler LT; Mallmann CA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Nov; 38(11):1958-1968. PubMed ID: 34334116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-block classification of Italian semolina based on Near Infrared Spectroscopy (NIR) analysis and alveographic indices.
    Firmani P; Nardecchia A; Nocente F; Gazza L; Marini F; Biancolillo A
    Food Chem; 2020 Mar; 309():125677. PubMed ID: 31685372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS): Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients.
    García-Molina MD; García-Olmo J; Barro F
    PLoS One; 2016; 11(3):e0152292. PubMed ID: 27018786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.