These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 33223332)
21. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Liu C; Fan L; Xing J; Wang Q; Lin C; Liu C; Deng X; Ning C; Zhou L; Rong L; Liu B Biomater Sci; 2019 Apr; 7(5):1995-2008. PubMed ID: 30839020 [TBL] [Abstract][Full Text] [Related]
22. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury. Zhang LQ; Zhang WM; Deng L; Xu ZX; Lan WB; Lin JH Cell Transplant; 2018 Mar; 27(3):471-484. PubMed ID: 29756516 [TBL] [Abstract][Full Text] [Related]
23. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury. Liu Y; Zhang Z; Zhang Y; Luo B; Liu X; Cao Y; Pei R Acta Biomater; 2023 Mar; 158():178-189. PubMed ID: 36584800 [TBL] [Abstract][Full Text] [Related]
24. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Song S; Li Y; Huang J; Cheng S; Zhang Z Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714 [TBL] [Abstract][Full Text] [Related]
25. Upregulation of Apol8 by Epothilone D facilitates the neuronal relay of transplanted NSCs in spinal cord injury. Xue W; Zhang H; Fan Y; Xiao Z; Zhao Y; Liu W; Xu B; Yin Y; Chen B; Li J; Cui Y; Shi Y; Dai J Stem Cell Res Ther; 2021 May; 12(1):300. PubMed ID: 34039405 [TBL] [Abstract][Full Text] [Related]
26. Scar tissue removal-activated endogenous neural stem cells aid Taxol-modified collagen scaffolds in repairing chronic long-distance transected spinal cord injury. Yin W; Xue W; Zhu H; Shen H; Xiao Z; Wu S; Zhao Y; Cao Y; Tan J; Li J; Liu W; Wang L; Meng L; Chen B; Zhao M; Jiang X; Li X; Ren C; Dai J Biomater Sci; 2021 Jul; 9(13):4778-4792. PubMed ID: 34042920 [TBL] [Abstract][Full Text] [Related]
27. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. Fan L; Liu C; Chen X; Zou Y; Zhou Z; Lin C; Tan G; Zhou L; Ning C; Wang Q ACS Appl Mater Interfaces; 2018 May; 10(21):17742-17755. PubMed ID: 29733569 [TBL] [Abstract][Full Text] [Related]
28. The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair. Li Z; Zhou T; Bao Z; Wu M; Mao Y Tissue Eng Regen Med; 2024 Aug; 21(6):809-827. PubMed ID: 39004636 [TBL] [Abstract][Full Text] [Related]
30. Engineering Microenvironment for Endogenous Neural Regeneration after Spinal Cord Injury by Reassembling Extracellular Matrix. Liu H; Xu X; Tu Y; Chen K; Song L; Zhai J; Chen S; Rong L; Zhou L; Wu W; So KF; Ramakrishna S; He L ACS Appl Mater Interfaces; 2020 Apr; 12(15):17207-17219. PubMed ID: 32207300 [TBL] [Abstract][Full Text] [Related]
31. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Yang Z; Zhang A; Duan H; Zhang S; Hao P; Ye K; Sun YE; Li X Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13354-9. PubMed ID: 26460015 [TBL] [Abstract][Full Text] [Related]
32. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078 [TBL] [Abstract][Full Text] [Related]
33. Direct neuronal differentiation of neural stem cells for spinal cord injury repair. Xue W; Fan C; Chen B; Zhao Y; Xiao Z; Dai J Stem Cells; 2021 Aug; 39(8):1025-1032. PubMed ID: 33657255 [TBL] [Abstract][Full Text] [Related]
34. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Liu D; Lu G; Shi B; Ni H; Wang J; Qiu Y; Yang L; Zhu Z; Yi X; Du X; Shi B Adv Healthc Mater; 2023 Jul; 12(18):e2300123. PubMed ID: 36989238 [TBL] [Abstract][Full Text] [Related]
35. The neuronal differentiation microenvironment is essential for spinal cord injury repair. Zhao Y; Xiao Z; Chen B; Dai J Organogenesis; 2017 Jul; 13(3):63-70. PubMed ID: 28598297 [TBL] [Abstract][Full Text] [Related]
36. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Cai Z; Gan Y; Bao C; Wu W; Wang X; Zhang Z; Zhou Q; Lin Q; Yang Y; Zhu L Adv Healthc Mater; 2019 Jul; 8(13):e1900013. PubMed ID: 31074122 [TBL] [Abstract][Full Text] [Related]
37. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. Wu W; Jia S; Xu H; Gao Z; Wang Z; Lu B; Ai Y; Liu Y; Liu R; Yang T; Luo R; Hu C; Kong L; Huang D; Yan L; Yang Z; Zhu L; Hao D ACS Nano; 2023 Feb; 17(4):3818-3837. PubMed ID: 36787636 [TBL] [Abstract][Full Text] [Related]
38. Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury. Ma YH; Shi HJ; Wei QS; Deng QW; Sun JH; Liu Z; Lai BQ; Li G; Ding Y; Niu WT; Zeng YS; Zeng X Biomaterials; 2021 Dec; 279():121192. PubMed ID: 34700225 [TBL] [Abstract][Full Text] [Related]
39. A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenitor Cells to Treat Spinal Cord Injury. Li H; Ham TR; Neill N; Farrag M; Mohrman AE; Koenig AM; Leipzig ND Adv Healthc Mater; 2016 Apr; 5(7):802-12. PubMed ID: 26913590 [TBL] [Abstract][Full Text] [Related]
40. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis. Jeon J; Park SH; Choi J; Han SM; Kim HW; Shim SR; Hyun JK Acta Biomater; 2024 Jul; 183():50-60. PubMed ID: 38871200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]