These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33223339)

  • 61. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH.
    Fang J; Xu MJ; Wang DJ; Wen B; Han JY
    Water Res; 2013 Mar; 47(3):1399-408. PubMed ID: 23276424
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Strong release of viruses in fracture flow in response to a perturbation in ionic strength: Filtration/retention tests and modeling.
    Masciopinto C; Visino F
    Water Res; 2017 Dec; 126():240-251. PubMed ID: 28961492
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone.
    Silva JAK; Martin WA; Johnson JL; McCray JE
    J Contam Hydrol; 2019 Jun; 223():103472. PubMed ID: 30979513
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Straining, attachment, and detachment of cryptosporidium oocysts in saturated porous media.
    Bradford SA; Bettahar M
    J Environ Qual; 2005; 34(2):469-78. PubMed ID: 15758099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transport of E. coli colloids and surrogate microspheres in the filtration process: Effects of flow rate, media size, and media species.
    Zhao P; Geng T; Guo Y; Meng Y; Zhang H; Zhao W
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112883. PubMed ID: 36215896
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.
    Tian Y; Gao B; Morales VL; Wang Y; Wu L
    J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Concurrent agglomeration and straining govern the transport of
    Su Y; Gao B; Mao L
    Water Res; 2017 May; 115():84-93. PubMed ID: 28259817
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon.
    Li X; Scheibe TD; Johnson WP
    Environ Sci Technol; 2004 Nov; 38(21):5616-25. PubMed ID: 15575280
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Changes of the Specific Infectivity of Tracer Phages during Transport in Porous Media.
    Ghanem N; Trost M; Sánchez Fontanet L; Harms H; Chatzinotas A; Wick LY
    Environ Sci Technol; 2018 Mar; 52(6):3486-3492. PubMed ID: 29481067
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transport of arsenic loaded by ferric humate colloid in saturated porous media.
    Yao Y; Mi N; He C; Yin L; Zhou D; Zhang Y; Sun H; Yang S; Li S; He H
    Chemosphere; 2020 Feb; 240():124987. PubMed ID: 31726603
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Uranium facilitated transport by water-dispersible colloids in field and soil columns.
    Crançon P; Pili E; Charlet L
    Sci Total Environ; 2010 Apr; 408(9):2118-28. PubMed ID: 20178885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Co-transport of uranyl carbonate and silica colloids in saturated quartz sand under different hydrochemical conditions.
    Hou W; Lei Z; Hu E; Wang H; Wang Q; Zhang R; Li H
    Sci Total Environ; 2021 Apr; 765():142716. PubMed ID: 33069474
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Contact line extraction and length measurements in model sediments and sedimentary rocks.
    Rodriguez E; Prodanović M; Bryant SL
    J Colloid Interface Sci; 2012 Feb; 368(1):558-77. PubMed ID: 22154497
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition.
    Zhuang J; Jin Y
    J Contam Hydrol; 2003 Feb; 60(3-4):193-209. PubMed ID: 12504359
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media.
    Leij FJ; Bradford SA; Sciortino A
    J Contam Hydrol; 2016 Dec; 195():40-51. PubMed ID: 27890296
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aluminum hydroxide colloid facilitated transport of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in porous media.
    Qiu W; Ma T; Liu R; Du Y
    Chemosphere; 2020 Nov; 258():127321. PubMed ID: 32531297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.