These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33223339)

  • 81. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.
    Syngouna VI; Chrysikopoulos CV
    J Colloid Interface Sci; 2015 Feb; 440():140-50. PubMed ID: 25460700
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type.
    Zhao K; Shang J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160415. PubMed ID: 36427725
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Does water content or flow rate control colloid transport in unsaturated porous media?
    Knappenberger T; Flury M; Mattson ED; Harsh JB
    Environ Sci Technol; 2014 Apr; 48(7):3791-9. PubMed ID: 24588072
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.
    Cheng T; Saiers JE
    Environ Sci Technol; 2010 Oct; 44(19):7443-9. PubMed ID: 20812714
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media: A real-time pore-scale visualization.
    Dong S; Zhou M; Su X; Xia J; Wang L; Wu H; Suakollie EB; Wang D
    Water Res; 2022 May; 214():118195. PubMed ID: 35193078
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.
    Pang L; Lafogler M; Knorr B; McGill E; Saunders D; Baumann T; Abraham P; Close M
    Sci Total Environ; 2016 Apr; 550():60-68. PubMed ID: 26803685
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 90. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Straining of nonspherical colloids in saturated porous media.
    Xu S; Liao Q; Saiers JE
    Environ Sci Technol; 2008 Feb; 42(3):771-8. PubMed ID: 18323101
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.
    Klitzke S; Schroeder J; Selinka HC; Szewzyk R; Chorus I
    Sci Total Environ; 2015 Jun; 518-519():130-8. PubMed ID: 25747372
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Colloid retention at the meniscus-wall contact line in an open microchannel.
    Zevi Y; Gao B; Zhang W; Morales VL; Cakmak ME; Medrano EA; Sang W; Steenhuis TS
    Water Res; 2012 Feb; 46(2):295-306. PubMed ID: 22130000
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Deposition of environmentally relevant nanoplastic models in sand during transport experiments.
    Pradel A; Hadri HE; Desmet C; Ponti J; Reynaud S; Grassl B; Gigault J
    Chemosphere; 2020 Sep; 255():126912. PubMed ID: 32408126
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Measuring and modeling the influence of salinity change on the transport behaviour of Escherichia coli through quartz sand.
    Zhang D; Prigiobbe V
    J Contam Hydrol; 2022 Jun; 248():104016. PubMed ID: 35512510
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media.
    Lyu Y; Brusseau ML
    Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.
    Johnson WP; Pazmino E; Ma H
    Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.