These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33223339)

  • 101. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Adsorption of natural organic matter to air-water interfaces during transport through unsaturated porous media.
    Lenhart JJ; Saiers JE
    Environ Sci Technol; 2004 Jan; 38(1):120-6. PubMed ID: 14740726
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Escherichia coil O157:H7 transport in saturated porous media: role of solution chemistry and surface macromolecules.
    Kim HN; Bradford SA; Walker SL
    Environ Sci Technol; 2009 Jun; 43(12):4340-7. PubMed ID: 19603644
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems.
    Fan W; Jiang XH; Yang W; Geng Z; Huo MX; Liu ZM; Zhou H
    Sci Total Environ; 2015 Apr; 511():509-15. PubMed ID: 25577737
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.
    Grolimund D; Borkovec M
    Environ Sci Technol; 2005 Sep; 39(17):6378-86. PubMed ID: 16190190
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 109. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media.
    Tian Y; Gao B; Ziegler KJ
    J Hazard Mater; 2011 Feb; 186(2-3):1766-72. PubMed ID: 21236566
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Transport of marine tracer phage particles in soil.
    You X; Kallies R; Hild K; Hildebrandt A; Harms H; Chatzinotas A; Wick LY
    Sci Total Environ; 2022 Mar; 814():152704. PubMed ID: 34973315
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Transport of GenX in Saturated and Unsaturated Porous Media.
    Yan N; Ji Y; Zhang B; Zheng X; Brusseau ML
    Environ Sci Technol; 2020 Oct; 54(19):11876-11885. PubMed ID: 32972138
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 113. A pore-scale investigation of microplastics migration and deposition during unsaturated flow in porous media.
    He H; Wu T; Chen YF; Yang Z
    Sci Total Environ; 2023 Feb; 858(Pt 2):159934. PubMed ID: 36343821
    [TBL] [Abstract][Full Text] [Related]  

  • 114. VIRTUS, a model of virus transport in unsaturated soils.
    Yates MV; Ouyang Y
    Appl Environ Microbiol; 1992 May; 58(5):1609-16. PubMed ID: 1622230
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media.
    Wan J; Wilson JL; Kieft TL
    Appl Environ Microbiol; 1994 Feb; 60(2):509-16. PubMed ID: 16349180
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Interactive removal of bacterial and viral particles during transport through low-cost filtering materials.
    Chen X; Yang L; Guo J; Xu S; Di J; Zhuang J
    Front Microbiol; 2022; 13():970338. PubMed ID: 35992651
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Bacteriophages pass through candle-shaped porous ceramic filters: Application for the collection of viruses in soil water.
    Florent P; Cauchie HM; Herold M; Ogorzaly L
    Microbiologyopen; 2022 Oct; 11(5):e1314. PubMed ID: 36314760
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A unified parameter model based on machine learning for describing microbial transport in porous media.
    Ke D; Li R; Ning Z; Liu C
    Sci Total Environ; 2022 Nov; 845():157216. PubMed ID: 35839891
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Bacterial enrichment at the gas-water interface of a laboratory apparatus.
    Powelson DK; Mills AL
    Appl Environ Microbiol; 1996 Jul; 62(7):2593-7. PubMed ID: 16535365
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not?
    Zhang W; Chai J; Li S; Wang X; Wu S; Liang Z; Baloch MYJ; Silva LFO; Zhang D
    Geosci Front; 2022 Nov; 13(6):101346. PubMed ID: 37521131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.