These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33223387)

  • 1. Response of sorghum genotypes to water deficit stress under different CO
    Asadi M; Eshghizadeh HR
    Plant Physiol Biochem; 2021 Jan; 158():255-264. PubMed ID: 33223387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions.
    Kamali S; Mehraban A
    PLoS One; 2020; 15(12):e0243824. PubMed ID: 33370318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitrogen supply on stay-green sorghum in differing post-flowering water regimes.
    Hou X; Xue Q; Jessup KE; Zhang Y; Blaser B; Stewart BA; Baltensperger DD
    Planta; 2021 Sep; 254(4):63. PubMed ID: 34477992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought.
    De Souza AP; Cocuron JC; Garcia AC; Alonso AP; Buckeridge MS
    Plant Physiol; 2015 Nov; 169(3):1755-65. PubMed ID: 26336093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis.
    Rajarajan K; Ganesamurthy K; Raveendran M; Jeyakumar P; Yuvaraja A; Sampath P; Prathima PT; Senthilraja C
    Mol Biol Rep; 2021 Mar; 48(3):2453-2462. PubMed ID: 33755850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment.
    Fracasso A; Trindade L; Amaducci S
    J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development.
    Kakani VG; Vu JC; Allen LH; Boote KJ
    J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor.
    Chen D; Wang S; Xiong B; Cao B; Deng X
    PLoS One; 2015; 10(8):e0137026. PubMed ID: 26317421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time.
    Neilson EH; Edwards AM; Blomstedt CK; Berger B; Møller BL; Gleadow RM
    J Exp Bot; 2015 Apr; 66(7):1817-32. PubMed ID: 25697789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nitrogen fertilization and drought on hydrocyanic acid accumulation and morpho-physiological parameters of sorghums.
    Shehab AESAE; Guo Y
    J Sci Food Agric; 2021 Jun; 101(8):3355-3365. PubMed ID: 33227149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes.
    Sutka MR; Manzur ME; Vitali VA; Micheletto S; Amodeo G
    J Plant Physiol; 2016 Mar; 192():13-20. PubMed ID: 26803215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum.
    Santana SRA; Voltolini TV; Antunes GDR; da Silva VM; Simões WL; Morgante CV; de Freitas ADS; Chaves ARM; Aidar ST; Fernandes-Júnior PI
    Arch Microbiol; 2020 Jul; 202(5):1015-1024. PubMed ID: 31932864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2].
    Sánchez-Gómez D; Mancha JA; Cervera MT; Aranda I
    Ann Bot; 2017 Oct; 120(4):591-602. PubMed ID: 29059316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic profile and content of sorghum grains under different irrigation managements.
    Wu G; Bennett SJ; Bornman JF; Clarke MW; Fang Z; Johnson SK
    Food Res Int; 2017 Jul; 97():347-355. PubMed ID: 28578059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions.
    Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S
    J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive Effects of [CO
    Liu Y; Dang Z; Parajulee MN; Chen F
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31072035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impacts of drought stress on leaf osmotic adjustment and chloroplast ultrastructure of stay-green sorghum].
    Zhou YF; Wang DQ; Lu ZB; Wang N; Wang YT; Li FX; Xu WJ; Huang RD
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2545-50. PubMed ID: 24417113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.