BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 33224019)

  • 1. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance.
    Rose J; Brian C; Pappa A; Panayiotidis MI; Franco R
    Front Neurosci; 2020; 14():536682. PubMed ID: 33224019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocyte strategies in the energy-efficient brain.
    Fernández-González I; Galea E
    Essays Biochem; 2023 Mar; 67(1):3-16. PubMed ID: 36350053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetics and redox adaptations of astrocytes to neuronal activity.
    Bolaños JP
    J Neurochem; 2016 Oct; 139 Suppl 2(Suppl Suppl 2):115-125. PubMed ID: 26968531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival.
    Rose J; Brian C; Woods J; Pappa A; Panayiotidis MI; Powers R; Franco R
    Toxicology; 2017 Nov; 391():109-115. PubMed ID: 28655545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glial metabolism studied by 13C-NMR.
    Zwingmann C; Leibfritz D
    NMR Biomed; 2003; 16(6-7):370-99. PubMed ID: 14679501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns.
    Jackson JG; Robinson MB
    Glia; 2018 Jun; 66(6):1213-1234. PubMed ID: 29098734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K
    DiNuzzo M; Giove F; Maraviglia B; Mangia S
    Neurochem Res; 2017 Jan; 42(1):202-216. PubMed ID: 27628293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes.
    Fu W; Ruangkittisakul A; MacTavish D; Baker GB; Ballanyi K; Jhamandas JH
    Neuroscience; 2013 Oct; 250():520-35. PubMed ID: 23876319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.
    Zwingmann C; Leibfritz D; Hazell AS
    J Cereb Blood Flow Metab; 2003 Jun; 23(6):756-71. PubMed ID: 12796724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Energy Metabolism Supports Cerebral Function: Insights from
    Sonnay S; Gruetter R; Duarte JMN
    Front Neurosci; 2017; 11():288. PubMed ID: 28603480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal bioenergetics and acute mitochondrial dysfunction: a clue to understanding the central nervous system side effects of efavirenz.
    Funes HA; Apostolova N; Alegre F; Blas-Garcia A; Alvarez A; Marti-Cabrera M; Esplugues JV
    J Infect Dis; 2014 Nov; 210(9):1385-95. PubMed ID: 24813473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders.
    Grimm A; Schmitt K; Lang UE; Mensah-Nyagan AG; Eckert A
    Biochim Biophys Acta; 2014 Dec; 1842(12 Pt A):2427-38. PubMed ID: 25281013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function.
    McNair LF; Andersen JV; Aldana BI; Hohnholt MC; Nissen JD; Sun Y; Fischer KD; Sonnewald U; Nyberg N; Webster SC; Kapur K; Rimmele TS; Barone I; Hawks-Mayer H; Lipton JO; Hodgson NW; Hensch TK; Aoki CJ; Rosenberg PA; Waagepetersen HS
    J Neurosci; 2019 Jun; 39(25):4847-4863. PubMed ID: 30926746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurons rely on glucose rather than astrocytic lactate during stimulation.
    Díaz-García CM; Yellen G
    J Neurosci Res; 2019 Aug; 97(8):883-889. PubMed ID: 30575090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes.
    Sarkar S; Malovic E; Harischandra DS; Ngwa HA; Ghosh A; Hogan C; Rokad D; Zenitsky G; Jin H; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurotoxicology; 2018 Jan; 64():204-218. PubMed ID: 28539244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.
    Rodrigues MDN; Seminotti B; Zanatta Â; de Mello Gonçalves A; Bellaver B; Amaral AU; Quincozes-Santos A; Goodman SI; Woontner M; Souza DO; Wajner M
    Mol Neurobiol; 2017 Aug; 54(6):4795-4805. PubMed ID: 27510504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes.
    Eraso-Pichot A; Brasó-Vives M; Golbano A; Menacho C; Claro E; Galea E; Masgrau R
    Glia; 2018 Aug; 66(8):1724-1735. PubMed ID: 29575211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.