These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33224028)

  • 1. Neuromodulation by mGluRs in Sound Localization Circuits in the Auditory Brainstem.
    Goel N; Peng K; Lu Y
    Front Neural Circuits; 2020; 14():599600. PubMed ID: 33224028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse.
    Curry RJ; Peng K; Lu Y
    J Neurosci; 2018 Sep; 38(38):8187-8199. PubMed ID: 30093538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms Underlying Enhancement of Spontaneous Glutamate Release by Group I mGluRs at a Central Auditory Synapse.
    Peng K; Wang X; Wang Y; Li D; Huang H; Lu Y
    J Neurosci; 2020 Sep; 40(37):7027-7042. PubMed ID: 32801152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic plasticity induced by group II metabotropic glutamate receptors via enhancement of high-threshold KV currents in sound localizing neurons.
    Hamlet WR; Lu Y
    Neuroscience; 2016 Jun; 324():177-90. PubMed ID: 26964678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modulation by intensity of the processing of interaural timing cues for localizing sounds.
    Nishino E; Ohmori H
    Mol Neurobiol; 2009 Oct; 40(2):157-65. PubMed ID: 19593674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond timing in the auditory brainstem: intensity coding in the avian cochlear nucleus angularis.
    MacLeod KM; Carr CE
    Prog Brain Res; 2007; 165():123-33. PubMed ID: 17925243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabotropic glutamate receptor activation modulates sound level processing in the cochlear nucleus.
    Sanes DH; McGee J; Walsh EJ
    J Neurophysiol; 1998 Jul; 80(1):209-17. PubMed ID: 9658042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal specializations for the processing of interaural difference cues in the chick.
    Ohmori H
    Front Neural Circuits; 2014; 8():47. PubMed ID: 24847212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabotropic glutamate and GABA receptors modulate cellular excitability and glutamatergic transmission in chicken cochlear nucleus angularis neurons.
    Shi W; Lu Y
    Hear Res; 2017 Mar; 346():14-24. PubMed ID: 28104407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.
    Ye Z; Goutman JD; Pyott SJ; Glowatzki E
    J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabotropic glutamate receptors in auditory processing.
    Lu Y
    Neuroscience; 2014 Aug; 274():429-45. PubMed ID: 24909898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound localization and delay lines--do mammals fit the model?
    McAlpine D; Grothe B
    Trends Neurosci; 2003 Jul; 26(7):347-50. PubMed ID: 12850430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem.
    Stange-Marten A; Nabel AL; Sinclair JL; Fischl M; Alexandrova O; Wohlfrom H; Kopp-Scheinpflug C; Pecka M; Grothe B
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4851-E4858. PubMed ID: 28559325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
    Palanca-Castan N; Köppl C
    Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry.
    Burger RM; Fukui I; Ohmori H; Rubel EW
    J Neurophysiol; 2011 Jul; 106(1):4-14. PubMed ID: 21525367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.