These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33224114)

  • 1. Ozone Decreased Enteric Methane Production by 20% in an
    Zhao L; Caro E; Holman DB; Gzyl KE; Moate PJ; Chaves AV
    Front Microbiol; 2020; 11():571537. PubMed ID: 33224114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.
    Lettat A; Hassanat F; Benchaar C
    J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different barley and oat varieties on methane production, digestibility, and fermentation pattern in vitro.
    Fant P; Ramin M; Jaakkola S; Grimberg Å; Carlsson AS; Huhtanen P
    J Dairy Sci; 2020 Feb; 103(2):1404-1415. PubMed ID: 31785868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.
    Guyader J; Eugène M; Doreau M; Morgavi DP; Gérard C; Martin C
    J Dairy Sci; 2017 Mar; 100(3):1845-1855. PubMed ID: 28109588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Hardwood Biochar on Methane Production, Fermentation Characteristics, and the Rumen Microbiota Using Rumen Simulation.
    Teoh R; Caro E; Holman DB; Joseph S; Meale SJ; Chaves AV
    Front Microbiol; 2019; 10():1534. PubMed ID: 31354652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet.
    Saleem AM; Ribeiro GO; Yang WZ; Ran T; Beauchemin KA; McGeough EJ; Ominski KH; Okine EK; McAllister TA
    J Anim Sci; 2018 Jul; 96(8):3121-3130. PubMed ID: 29912357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-response effects of dietary pequi oil on fermentation characteristics and microbial population using a rumen simulation technique (Rusitec).
    Duarte AC; Durmic Z; Vercoe PE; Chaves AV
    Anaerobe; 2017 Dec; 48():59-65. PubMed ID: 28668707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ; Zhang XM; Smith ML; Kung L; Vyas D; McGinn SM; Kindermann M; Wang M; Tan ZL; Beauchemin KA
    Anim Microbiome; 2022 May; 4(1):35. PubMed ID: 35642048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a single-flow continuous culture fermenter system for determination of ruminal fermentation and enteric methane production.
    Dillard SL; Roca-Fernández AI; Rubano MD; Soder KJ
    J Anim Physiol Anim Nutr (Berl); 2019 Sep; 103(5):1313-1324. PubMed ID: 31298448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between-cow variation in digestion and rumen fermentation variables associated with methane production.
    Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P
    J Dairy Sci; 2017 Jun; 100(6):4409-4424. PubMed ID: 28390728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet.
    Vyas D; McGeough EJ; Mohammed R; McGinn SM; McAllister TA; Beauchemin KA
    Animal; 2014 Nov; 8(11):1807-15. PubMed ID: 25322788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows.
    Bougouin A; Martin C; Doreau M; Ferlay A
    Animal; 2019 Jul; 13(7):1421-1431. PubMed ID: 30488812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.
    Benchaar C; Hassanat F; Martineau R; Gervais R
    J Dairy Sci; 2015 Nov; 98(11):7993-8008. PubMed ID: 26298755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.
    Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J
    Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility.
    Yang K; Wei C; Zhao GY; Xu ZW; Lin SX
    J Anim Physiol Anim Nutr (Berl); 2017 Apr; 101(2):302-310. PubMed ID: 27272696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates.
    O'Reilly GC; Huo Y; Meale SJ; Chaves AV
    Transl Anim Sci; 2021 Jul; 5(3):txab107. PubMed ID: 34430799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
    van Lingen HJ; Fadel JG; Moraes LE; Bannink A; Dijkstra J
    J Theor Biol; 2019 Nov; 480():150-165. PubMed ID: 31401059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion.
    Martin C; Ferlay A; Mosoni P; Rochette Y; Chilliard Y; Doreau M
    J Dairy Sci; 2016 May; 99(5):3445-3456. PubMed ID: 26947299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.