These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
912 related articles for article (PubMed ID: 33224433)
1. Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. Jimenez-Moreno N; Lane JD Oxid Med Cell Longev; 2020; 2020():8865611. PubMed ID: 33224433 [TBL] [Abstract][Full Text] [Related]
2. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Guo JD; Zhao X; Li Y; Li GR; Liu XL Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). Liu XL; Wang YD; Yu XM; Li DW; Li GR Int J Mol Med; 2018 Feb; 41(2):615-623. PubMed ID: 29207041 [TBL] [Abstract][Full Text] [Related]
4. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429 [TBL] [Abstract][Full Text] [Related]
5. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Rekha KR; Inmozhi Sivakamasundari R Neurochem Res; 2018 Oct; 43(10):1947-1962. PubMed ID: 30141137 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress and autophagy in cardiovascular homeostasis. Morales CR; Pedrozo Z; Lavandero S; Hill JA Antioxid Redox Signal; 2014 Jan; 20(3):507-18. PubMed ID: 23641894 [TBL] [Abstract][Full Text] [Related]
7. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Lee J; Giordano S; Zhang J Biochem J; 2012 Jan; 441(2):523-40. PubMed ID: 22187934 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial control of cell bioenergetics in Parkinson's disease. Requejo-Aguilar R; Bolaños JP Free Radic Biol Med; 2016 Nov; 100():123-137. PubMed ID: 27091692 [TBL] [Abstract][Full Text] [Related]
9. The Role of Free Radicals in Autophagy Regulation: Implications for Ageing. Pajares M; Cuadrado A; Engedal N; Jirsova Z; Cahova M Oxid Med Cell Longev; 2018; 2018():2450748. PubMed ID: 29682156 [TBL] [Abstract][Full Text] [Related]
10. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Fransen M; Nordgren M; Wang B; Apanasets O Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243 [TBL] [Abstract][Full Text] [Related]
11. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770 [TBL] [Abstract][Full Text] [Related]
13. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers. Medeiros MS; Schumacher-Schuh A; Cardoso AM; Bochi GV; Baldissarelli J; Kegler A; Santana D; Chaves CM; Schetinger MR; Moresco RN; Rieder CR; Fighera MR PLoS One; 2016; 11(1):e0146129. PubMed ID: 26751079 [TBL] [Abstract][Full Text] [Related]
14. Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy. Bai H; Ding Y; Li X; Kong D; Xin C; Yang X; Zhang C; Rong Z; Yao C; Lu S; Ji L; Li L; Huang W Neurochem Int; 2020 Mar; 134():104671. PubMed ID: 31926197 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of Excessive Oxidative Protein Folding Is Protective in MPP(+) Toxicity-Induced Parkinson's Disease Models. Lehtonen Š; Jaronen M; Vehviläinen P; Lakso M; Rudgalvyte M; Keksa-Goldsteine V; Wong G; Courtney MJ; Koistinaho J; Goldsteins G Antioxid Redox Signal; 2016 Sep; 25(8):485-97. PubMed ID: 27139804 [TBL] [Abstract][Full Text] [Related]
16. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Redza-Dutordoir M; Averill-Bates DA Biochim Biophys Acta Mol Cell Res; 2021 Jul; 1868(8):119041. PubMed ID: 33872672 [TBL] [Abstract][Full Text] [Related]
17. Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson's disease model. Bae JE; Kang GM; Min SH; Jo DS; Jung YK; Kim K; Kim MS; Cho DH Cell Death Dis; 2019 Dec; 10(12):952. PubMed ID: 31844040 [TBL] [Abstract][Full Text] [Related]
18. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450 [TBL] [Abstract][Full Text] [Related]
19. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease. Liu L; Peritore C; Ginsberg J; Shih J; Arun S; Donmez G Behav Brain Res; 2015 Mar; 281():215-21. PubMed ID: 25541039 [TBL] [Abstract][Full Text] [Related]
20. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]