BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

910 related articles for article (PubMed ID: 33224433)

  • 1. Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act.
    Jimenez-Moreno N; Lane JD
    Oxid Med Cell Longev; 2020; 2020():8865611. PubMed ID: 33224433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review).
    Guo JD; Zhao X; Li Y; Li GR; Liu XL
    Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review).
    Liu XL; Wang YD; Yu XM; Li DW; Li GR
    Int J Mol Med; 2018 Feb; 41(2):615-623. PubMed ID: 29207041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease.
    Rekha KR; Inmozhi Sivakamasundari R
    Neurochem Res; 2018 Oct; 43(10):1947-1962. PubMed ID: 30141137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and autophagy in cardiovascular homeostasis.
    Morales CR; Pedrozo Z; Lavandero S; Hill JA
    Antioxid Redox Signal; 2014 Jan; 20(3):507-18. PubMed ID: 23641894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling.
    Lee J; Giordano S; Zhang J
    Biochem J; 2012 Jan; 441(2):523-40. PubMed ID: 22187934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial control of cell bioenergetics in Parkinson's disease.
    Requejo-Aguilar R; Bolaños JP
    Free Radic Biol Med; 2016 Nov; 100():123-137. PubMed ID: 27091692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks.
    Sandalio LM; Romero-Puertas MC
    Ann Bot; 2015 Sep; 116(4):475-85. PubMed ID: 26070643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Free Radicals in Autophagy Regulation: Implications for Ageing.
    Pajares M; Cuadrado A; Engedal N; Jirsova Z; Cahova M
    Oxid Med Cell Longev; 2018; 2018():2450748. PubMed ID: 29682156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
    Fransen M; Nordgren M; Wang B; Apanasets O
    Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Autophagy in hiPSC-Derived Midbrain Dopaminergic Neuronal Cultures for Parkinson's Disease Research.
    Stathakos P; Jimenez-Moreno N; Crompton L; Nistor P; Caldwell MA; Lane JD
    Methods Mol Biol; 2019; 1880():257-280. PubMed ID: 30610703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.
    Medeiros MS; Schumacher-Schuh A; Cardoso AM; Bochi GV; Baldissarelli J; Kegler A; Santana D; Chaves CM; Schetinger MR; Moresco RN; Rieder CR; Fighera MR
    PLoS One; 2016; 11(1):e0146129. PubMed ID: 26751079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy.
    Bai H; Ding Y; Li X; Kong D; Xin C; Yang X; Zhang C; Rong Z; Yao C; Lu S; Ji L; Li L; Huang W
    Neurochem Int; 2020 Mar; 134():104671. PubMed ID: 31926197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Excessive Oxidative Protein Folding Is Protective in MPP(+) Toxicity-Induced Parkinson's Disease Models.
    Lehtonen Š; Jaronen M; Vehviläinen P; Lakso M; Rudgalvyte M; Keksa-Goldsteine V; Wong G; Courtney MJ; Koistinaho J; Goldsteins G
    Antioxid Redox Signal; 2016 Sep; 25(8):485-97. PubMed ID: 27139804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis.
    Redza-Dutordoir M; Averill-Bates DA
    Biochim Biophys Acta Mol Cell Res; 2021 Jul; 1868(8):119041. PubMed ID: 33872672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson's disease model.
    Bae JE; Kang GM; Min SH; Jo DS; Jung YK; Kim K; Kim MS; Cho DH
    Cell Death Dis; 2019 Dec; 10(12):952. PubMed ID: 31844040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease.
    Vogt Weisenhorn DM; Giesert F; Wurst W
    J Neurochem; 2016 Oct; 139 Suppl 1(Suppl Suppl 1):8-26. PubMed ID: 27206718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease.
    Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.