These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33224522)

  • 1. Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique.
    Perez AF; Taing KR; Quon JC; Flores A; Ba Y
    Crystals (Basel); 2019; 9(7):. PubMed ID: 33224522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography.
    Mutsenko V; Anastassopoulos E; Zaragotas D; Simaioforidou A; Tarusin D; Lauterboeck L; Sydykov B; Brunotte R; Brunotte K; Rozanski C; Petrenko AY; Braslavsky I; Glasmacher B; Gryshkov O
    Cryobiology; 2023 Jun; 111():57-69. PubMed ID: 37062517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins.
    Choi SR; Lee J; Seo YJ; Kong HS; Kim M; Jin E; Lee JR; Lee JH
    Comput Struct Biotechnol J; 2021; 19():897-909. PubMed ID: 33598104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.
    Han B; Bischof JC
    J Biomech Eng; 2004 Apr; 126(2):196-203. PubMed ID: 15179849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking.
    Ekpo MD; Xie J; Hu Y; Liu X; Liu F; Xiang J; Zhao R; Wang B; Tan S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.
    Ba Y; Wongskhaluang J; Li J
    J Am Chem Soc; 2003 Jan; 125(2):330-1. PubMed ID: 12517134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared spectroscopic analysis of hydrogen-bonding interactions in cryopreservation solutions.
    Caliskan S; Oldenhof H; Temeloglu P; Sieme H; Wolkers WF
    Biochim Biophys Acta Gen Subj; 2023 Jan; 1867(1):130254. PubMed ID: 36243203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming.
    Cziko PA; DeVries AL; Evans CW; Cheng CH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14583-8. PubMed ID: 25246548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant.
    Kim HJ; Lee JH; Hur YB; Lee CW; Park SH; Koo BW
    Mar Drugs; 2017 Jan; 15(2):. PubMed ID: 28134801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis.
    Tas RP; Hendrix MMRM; Voets IK
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2212456120. PubMed ID: 36595705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.
    Ba Y; Mao Y; Galdino L; Günsen Z
    J Biol Phys; 2013 Jan; 39(1):131-44. PubMed ID: 23860838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.