These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 33224630)

  • 1. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer.
    Maas RJ; Hoogstad-van Evert JS; Van der Meer JM; Mekers V; Rezaeifard S; Korman AJ; de Jonge PK; Cany J; Woestenenk R; Schaap NP; Massuger LF; Jansen JH; Hobo W; Dolstra H
    Oncoimmunology; 2020 Nov; 9(1):1843247. PubMed ID: 33224630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma.
    Cho MM; Song L; Quamine AE; Szewc F; Shi L; Ebben JD; Turicek DP; Kline JM; Burpee DM; Lafeber EO; Phillips MF; Ceas AS; Erbe AK; Capitini CM
    bioRxiv; 2024 Jun; ():. PubMed ID: 37333207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy.
    Sanchez-Correa B; Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Durán E; Alonso C; Solana R; Tarazona R
    Cancers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy.
    Blake SJ; Stannard K; Liu J; Allen S; Yong MC; Mittal D; Aguilera AR; Miles JJ; Lutzky VP; de Andrade LF; Martinet L; Colonna M; Takeda K; Kühnel F; Gurlevik E; Bernhardt G; Teng MW; Smyth MJ
    Cancer Discov; 2016 Apr; 6(4):446-59. PubMed ID: 26787820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56
    Ziegler AE; Fittje P; Müller LM; Ahrenstorf AE; Hagemann K; Hagen SH; Hess LU; Niehrs A; Poch T; Ravichandran G; Löbl SM; Padoan B; Brias S; Hennesen J; Richard M; Richert L; Peine S; Oldhafer KJ; Fischer L; Schramm C; Martrus G; Bunders MJ; Altfeld M; Lunemann S
    Front Immunol; 2023; 14():1117320. PubMed ID: 36845105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity.
    Zhang Q; Bi J; Zheng X; Chen Y; Wang H; Wu W; Wang Z; Wu Q; Peng H; Wei H; Sun R; Tian Z
    Nat Immunol; 2018 Jul; 19(7):723-732. PubMed ID: 29915296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy.
    Blake SJ; Dougall WC; Miles JJ; Teng MW; Smyth MJ
    Clin Cancer Res; 2016 Nov; 22(21):5183-5188. PubMed ID: 27620276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma.
    Sun H; Huang Q; Huang M; Wen H; Lin R; Zheng M; Qu K; Li K; Wei H; Xiao W; Sun R; Tian Z; Sun C
    Hepatology; 2019 Jul; 70(1):168-183. PubMed ID: 30411378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the "PVR-TIGIT axis" with immune checkpoint therapies.
    Gorvel L; Olive D
    F1000Res; 2020; 9():. PubMed ID: 32489646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma.
    Chauvin JM; Ka M; Pagliano O; Menna C; Ding Q; DeBlasio R; Sanders C; Hou J; Li XY; Ferrone S; Davar D; Kirkwood JM; Johnston RJ; Korman AJ; Smyth MJ; Zarour HM
    Clin Cancer Res; 2020 Oct; 26(20):5520-5533. PubMed ID: 32591463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia.
    Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Sanchez-Correa B; Guerrero B; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Sanchez-Garcia J; Serrano J; Martin C; Duran E; Alonso C; Solana R; Tarazona R
    Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32764229
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of the Characteristics of TIGIT-Expressing CD3
    Zhang X; Lu X; Cheung AKL; Zhang Q; Liu Z; Li Z; Yuan L; Wang R; Liu Y; Tang B; Xia H; Wu H; Zhang T; Su B
    Front Immunol; 2021; 12():602492. PubMed ID: 33717085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNAM-1 versus TIGIT: competitive roles in tumor immunity and inflammatory responses.
    Shibuya A; Shibuya K
    Int Immunol; 2021 Nov; 33(12):687-692. PubMed ID: 34694361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-derived soluble CD155 inhibits DNAM-1-mediated antitumor activity of natural killer cells.
    Okumura G; Iguchi-Manaka A; Murata R; Yamashita-Kanemaru Y; Shibuya A; Shibuya K
    J Exp Med; 2020 Mar; 217(4):1. PubMed ID: 32040157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD34
    Van der Meer JMR; de Jonge PKJD; van der Waart AB; Geerlings AC; Moonen JP; Brummelman J; de Klein J; Vermeulen MC; Maas RJA; Schaap NPM; Hoogstad-van Evert JS; Ottevanger PB; Jansen JH; Hobo W; Dolstra H
    Oncoimmunology; 2021; 10(1):1981049. PubMed ID: 34616589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia.
    Seel K; Schirrmann RL; Stowitschek D; Ioseliani T; Roiter L; Knierim A; André MC
    Cancer Immunol Immunother; 2024 Jul; 73(9):180. PubMed ID: 38967649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8
    Whelan S; Ophir E; Kotturi MF; Levy O; Ganguly S; Leung L; Vaknin I; Kumar S; Dassa L; Hansen K; Bernados D; Murter B; Soni A; Taube JM; Fader AN; Wang TL; Shih IM; White M; Pardoll DM; Liang SC
    Cancer Immunol Res; 2019 Feb; 7(2):257-268. PubMed ID: 30659054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIGIT immune checkpoint blockade enhances immunity of human peripheral blood NK cells against castration-resistant prostate cancer.
    Wang F; Liu S; Liu F; Xu T; Ma J; Liang J; Wang J; Liu D; Yang F; Li J; Xing N
    Cancer Lett; 2023 Aug; 568():216300. PubMed ID: 37414394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma.
    Lupo KB; Matosevic S
    J Hematol Oncol; 2020 Jun; 13(1):76. PubMed ID: 32532329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.