BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33225154)

  • 21. Selective removal behavior and mechanism of trace Hg(II) using modified corn husk leaves.
    Lin G; Hu T; Wang S; Xie T; Zhang L; Cheng S; Fu L; Xiong C
    Chemosphere; 2019 Jun; 225():65-72. PubMed ID: 30861384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions.
    Peng W; Xie Z; Cheng G; Shi L; Zhang Y
    J Hazard Mater; 2015 Aug; 294():9-16. PubMed ID: 25827392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of a Highly Porous Carbon Material Based on Quinoa Husk and Its Application for Removal of Dyes by Adsorption.
    Chen S; Tang S; Sun Y; Wang G; Chen H; Yu X; Su Y; Chen G
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on the cyclic adsorption performance of biomass composite membrane for Hg(II).
    Zhao BY; Yang XL; Liu XK; Shi Q; Liu YR; Wang L
    Environ Technol; 2023 Nov; 44(25):3777-3790. PubMed ID: 35481789
    [No Abstract]   [Full Text] [Related]  

  • 25. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles.
    Arshadi M; Mousavinia F; Khalafi-Nezhad A; Firouzabadi H; Abbaspourrad A
    J Colloid Interface Sci; 2017 Nov; 505():293-306. PubMed ID: 28582722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and Characterization of CuFe
    H Kamel A; Hassan AA; Amr AEE; El-Shalakany HH; A Al-Omar M
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32210136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.
    Masoumi A; Hemmati K; Ghaemy M
    Chemosphere; 2016 Mar; 146():253-62. PubMed ID: 26735725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater.
    Ismail MS; Yahya MD; Auta M; Obayomi KS
    Heliyon; 2022 May; 8(5):e09516. PubMed ID: 35663746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation.
    Foo KY; Hameed BH
    Bioresour Technol; 2011 Oct; 102(20):9814-7. PubMed ID: 21871796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.
    Ghaedi M; Pakniat M; Mahmoudi Z; Hajati S; Sahraei R; Daneshfar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():402-9. PubMed ID: 24412794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins.
    Wang Z; Gao M; Li X; Ning J; Zhou Z; Li G
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110196. PubMed ID: 31924020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of Hg
    Chen H; Liu F; Cai C; Wu H; Yang L
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17964-17976. PubMed ID: 34677779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass.
    Chai L; Wang Q; Li Q; Yang Z; Wang Y
    Water Sci Technol; 2010; 62(9):2157-66. PubMed ID: 21045345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of GO/FeSO
    Palanivel B; Vaiyazhipalayam Murugaiyan S; Marimuthu T
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):20621-20628. PubMed ID: 31377930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II).
    Fu Y; Xu X; Huang Y; Hu J; Chen Q; Wu Y
    R Soc Open Sci; 2017 Dec; 4(12):170829. PubMed ID: 29308226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.
    Elhafez SE; Hamad HA; Zaatout AA; Malash GF
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1397-1415. PubMed ID: 27783243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced adsorption of Cr(VI), Ni(II) ions from aqueous solution using modified Eichhornia crassipes and Lemna minor.
    Balasubramanian UM; Vaiyazhipalayam Murugaiyan S; Marimuthu T
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):20648-20662. PubMed ID: 31512129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism.
    Li C; Chen N; Zhao Y; Li R; Feng C
    Chemosphere; 2016 Nov; 163():81-89. PubMed ID: 27521642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study.
    Singh P; Sarswat A; Pittman CU; Mlsna T; Mohan D
    ACS Omega; 2020 Feb; 5(6):2575-2593. PubMed ID: 32095682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.