BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33225220)

  • 1.
    Sharma D; Ferguson M; Kamp TJ; Zhao F
    Emergent Mater; 2019; 2():181-191. PubMed ID: 33225220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Development in Therapeutic Cardiac Patches.
    Mei X; Cheng K
    Front Cardiovasc Med; 2020; 7():610364. PubMed ID: 33330673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Living cardiac patch: the elixir for cardiac regeneration.
    Lakshmanan R; Krishnan UM; Sethuraman S
    Expert Opin Biol Ther; 2012 Dec; 12(12):1623-40. PubMed ID: 22954059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises.
    Akbarzadeh A; Sobhani S; Soltani Khaboushan A; Kajbafzadeh AM
    Bioengineering (Basel); 2023 Jan; 10(1):. PubMed ID: 36671678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: the physio-mechanical influence of scaffold architecture and attachment method.
    Cyr JA; Burdett C; Pürstl JT; Thompson R; Troughton SC; Sinha S; Best SM; Cameron RE
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38942187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Cardiac Patches: Materials, Preparations, and Properties.
    Zhang Y; Mu W; Zhang Y; He X; Wang Y; Ma H; Zhu T; Li A; Hou Q; Yang W; Ding Y; Ramakrishna S; Li H
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3659-3675. PubMed ID: 36037313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers.
    Goyal R; Vega ME; Pastino AK; Singh S; Guvendiren M; Kohn J; Murthy NS; Schwarzbauer JE
    J Biomed Mater Res A; 2017 Aug; 105(8):2162-2170. PubMed ID: 28371271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.
    Wang Q; Yang H; Bai A; Jiang W; Li X; Wang X; Mao Y; Lu C; Qian R; Guo F; Ding T; Chen H; Chen S; Zhang J; Liu C; Sun N
    Biomaterials; 2016 Oct; 105():52-65. PubMed ID: 27509303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a polymer layered bio-hybrid heart valve scaffold.
    Jahnavi S; Kumary TV; Bhuvaneshwar GS; Natarajan TS; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():263-73. PubMed ID: 25842134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction.
    Efraim Y; Sarig H; Cohen Anavy N; Sarig U; de Berardinis E; Chaw SY; Krishnamoorthi M; Kalifa J; Bogireddi H; Duc TV; Kofidis T; Baruch L; Boey FYC; Venkatraman SS; Machluf M
    Acta Biomater; 2017 Mar; 50():220-233. PubMed ID: 27956366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles.
    Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC
    Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration.
    Wang Y; Zhou S; Yang R; Zou Q; Zhang K; Tian Q; Zhao W; Zong L; Fu Q
    Acta Biomater; 2019 Feb; 85():131-141. PubMed ID: 30553012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds.
    Rajabi-Zeleti S; Jalili-Firoozinezhad S; Azarnia M; Khayyatan F; Vahdat S; Nikeghbalian S; Khademhosseini A; Baharvand H; Aghdami N
    Biomaterials; 2014 Jan; 35(3):970-82. PubMed ID: 24183165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration.
    Belviso I; Romano V; Sacco AM; Ricci G; Massai D; Cammarota M; Catizone A; Schiraldi C; Nurzynska D; Terzini M; Aldieri A; Serino G; Schonauer F; Sirico F; D'Andrea F; Montagnani S; Di Meglio F; Castaldo C
    Front Bioeng Biotechnol; 2020; 8():229. PubMed ID: 32266249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.