These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
637 related articles for article (PubMed ID: 33225617)
21. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858 [TBL] [Abstract][Full Text] [Related]
22. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration. Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722 [TBL] [Abstract][Full Text] [Related]
23. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553 [TBL] [Abstract][Full Text] [Related]
24. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. Li Q; Yu H; Zhao F; Cao C; Wu T; Fan Y; Ao Y; Hu X Adv Sci (Weinh); 2023 Sep; 10(26):e2303650. PubMed ID: 37424038 [TBL] [Abstract][Full Text] [Related]
25. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Chen P; Zheng L; Wang Y; Tao M; Xie Z; Xia C; Gu C; Chen J; Qiu P; Mei S; Ning L; Shi Y; Fang C; Fan S; Lin X Theranostics; 2019; 9(9):2439-2459. PubMed ID: 31131046 [TBL] [Abstract][Full Text] [Related]
26. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Jabari E; Choe RH; Kuzemchak B; Venable-Croft A; Choi JY; McLoughlin S; Packer JD; Fisher JP Tissue Eng Part C Methods; 2024 Aug; 30(8):323-334. PubMed ID: 39078319 [TBL] [Abstract][Full Text] [Related]
29. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
30. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Tang P; Song P; Peng Z; Zhang B; Gui X; Wang Y; Liao X; Chen Z; Zhang Z; Fan Y; Li Z; Cen Y; Zhou C Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112423. PubMed ID: 34702546 [TBL] [Abstract][Full Text] [Related]
31. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. Duan P; Pan Z; Cao L; He Y; Wang H; Qu Z; Dong J; Ding J J Biomed Mater Res A; 2014 Jan; 102(1):180-92. PubMed ID: 23637068 [TBL] [Abstract][Full Text] [Related]
32. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
33. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
34. Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering. Tang Y; Wang H; Sun Y; Jiang Y; Fang S; Kan Z; Lu Y; Liu S; Zhou X; Li Z ACS Appl Bio Mater; 2021 Dec; 4(12):8607-8614. PubMed ID: 35005939 [TBL] [Abstract][Full Text] [Related]
35. Restoration of osteochondral defects by implanting bilayered poly(lactide- Duan P; Pan Z; Cao L; Gao J; Yao H; Liu X; Guo R; Liang X; Dong J; Ding J J Orthop Translat; 2019 Oct; 19():68-80. PubMed ID: 31844615 [TBL] [Abstract][Full Text] [Related]
36. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345 [TBL] [Abstract][Full Text] [Related]
37. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface. Deng C; Zhu H; Li J; Feng C; Yao Q; Wang L; Chang J; Wu C Theranostics; 2018; 8(7):1940-1955. PubMed ID: 29556366 [TBL] [Abstract][Full Text] [Related]
38. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect. Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606 [TBL] [Abstract][Full Text] [Related]
39. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. Yang T; Tamaddon M; Jiang L; Wang J; Liu Z; Liu Z; Meng H; Hu Y; Gao J; Yang X; Zhao Y; Wang Y; Wang A; Wu Q; Liu C; Peng J; Sun X; Xue Q J Orthop Translat; 2021 Sep; 30():112-121. PubMed ID: 34722154 [TBL] [Abstract][Full Text] [Related]
40. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]