BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 33225617)

  • 21. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration.
    Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L
    Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration.
    Li Q; Yu H; Zhao F; Cao C; Wu T; Fan Y; Ao Y; Hu X
    Adv Sci (Weinh); 2023 Sep; 10(26):e2303650. PubMed ID: 37424038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.
    Chen P; Zheng L; Wang Y; Tao M; Xie Z; Xia C; Gu C; Chen J; Qiu P; Mei S; Ning L; Shi Y; Fang C; Fan S; Lin X
    Theranostics; 2019; 9(9):2439-2459. PubMed ID: 31131046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D hybrid printing platform for auricular cartilage reconstruction.
    Chung JHY; Kade JC; Jeiranikhameneh A; Ruberu K; Mukherjee P; Yue Z; Wallace GG
    Biomed Phys Eng Express; 2020 Mar; 6(3):035003. PubMed ID: 33438648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.
    Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration.
    Tang P; Song P; Peng Z; Zhang B; Gui X; Wang Y; Liao X; Chen Z; Zhang Z; Fan Y; Li Z; Cen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112423. PubMed ID: 34702546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits.
    Duan P; Pan Z; Cao L; He Y; Wang H; Qu Z; Dong J; Ding J
    J Biomed Mater Res A; 2014 Jan; 102(1):180-92. PubMed ID: 23637068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of complex GelMA-based scaffolds with nanoclay.
    Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y
    Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering.
    Tang Y; Wang H; Sun Y; Jiang Y; Fang S; Kan Z; Lu Y; Liu S; Zhou X; Li Z
    ACS Appl Bio Mater; 2021 Dec; 4(12):8607-8614. PubMed ID: 35005939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of osteochondral defects by implanting bilayered poly(lactide-
    Duan P; Pan Z; Cao L; Gao J; Yao H; Liu X; Guo R; Liang X; Dong J; Ding J
    J Orthop Translat; 2019 Oct; 19():68-80. PubMed ID: 31844615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair.
    Jia W; Liu Z; Sun L; Cao Y; Shen Z; Li M; An Y; Zhang H; Sang S
    Biotechnol Bioeng; 2024 Jun; ():. PubMed ID: 38877732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface.
    Deng C; Zhu H; Li J; Feng C; Yao Q; Wang L; Chang J; Wu C
    Theranostics; 2018; 8(7):1940-1955. PubMed ID: 29556366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect.
    Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration.
    Yang T; Tamaddon M; Jiang L; Wang J; Liu Z; Liu Z; Meng H; Hu Y; Gao J; Yang X; Zhao Y; Wang Y; Wang A; Wu Q; Liu C; Peng J; Sun X; Xue Q
    J Orthop Translat; 2021 Sep; 30():112-121. PubMed ID: 34722154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration.
    Fan Y; Yue Z; Lucarelli E; Wallace GG
    Adv Healthc Mater; 2020 Dec; 9(24):e2001410. PubMed ID: 33200584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.