These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
43. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236 [TBL] [Abstract][Full Text] [Related]
44. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612 [TBL] [Abstract][Full Text] [Related]
45. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703 [TBL] [Abstract][Full Text] [Related]
46. Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks. Jahangir S; Vecstaudza J; Augurio A; Canciani E; Stipniece L; Locs J; Alini M; Serra T Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005143 [TBL] [Abstract][Full Text] [Related]
47. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
48. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607 [TBL] [Abstract][Full Text] [Related]
49. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
50. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842 [TBL] [Abstract][Full Text] [Related]
51. 3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering. Leu Alexa R; Iovu H; Ghitman J; Serafim A; Stavarache C; Marin MM; Ianchis R Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33673486 [TBL] [Abstract][Full Text] [Related]
52. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. Wang Y; Ling C; Chen J; Liu H; Mo Q; Zhang W; Yao Q Biomater Adv; 2022 Sep; 140():213067. PubMed ID: 35961187 [TBL] [Abstract][Full Text] [Related]
53. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds. Gao F; Xu Z; Liang Q; Li H; Peng L; Wu M; Zhao X; Cui X; Ruan C; Liu W Adv Sci (Weinh); 2019 Aug; 6(15):1900867. PubMed ID: 31406678 [TBL] [Abstract][Full Text] [Related]
54. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Deng C; Yang J; He H; Ma Z; Wang W; Zhang Y; Li T; He C; Wang J Biomater Sci; 2021 Jul; 9(14):4891-4903. PubMed ID: 34047307 [TBL] [Abstract][Full Text] [Related]
55. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Twohig C; Helsinga M; Mansoorifar A; Athirasala A; Tahayeri A; França CM; Pajares SA; Abdelmoniem R; Scherrer S; Durual S; Ferracane J; Bertassoni LE Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111976. PubMed ID: 33812604 [TBL] [Abstract][Full Text] [Related]
56. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400 [TBL] [Abstract][Full Text] [Related]
57. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities. Dang W; Wang X; Li J; Deng C; Liu Y; Yao Q; Wang L; Chang J; Wu C Theranostics; 2018; 8(16):4372-4392. PubMed ID: 30214627 [TBL] [Abstract][Full Text] [Related]
58. Embedded 3D Printing of Cryogel-Based Scaffolds. Bilici Ç; Altunbek M; Afghah F; Tatar AG; Koç B ACS Biomater Sci Eng; 2023 Aug; 9(8):5028-5038. PubMed ID: 37463481 [TBL] [Abstract][Full Text] [Related]
59. DLP Fabrication of Multiple Hierarchical Biomimetic GelMA/SilMA/HAp Scaffolds for Enhancing Bone Regeneration. Song P; Gui X; Wu L; Su X; Zhou W; Luo Z; Zhang B; Feng P; Wei W; Fan C; Wu Y; Zeng W; Zhou C; Fan Y; Zhou Z Biomacromolecules; 2024 Mar; 25(3):1871-1886. PubMed ID: 38324764 [TBL] [Abstract][Full Text] [Related]
60. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. Li H; Tan YJ; Liu S; Li L ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]