These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33225828)

  • 21. Phase I/II adaptive design for drug combination oncology trials.
    Wages NA; Conaway MR
    Stat Med; 2014 May; 33(12):1990-2003. PubMed ID: 24470329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is more better? An analysis of toxicity and response outcomes from dose-finding clinical trials in cancer.
    Brock K; Homer V; Soul G; Potter C; Chiuzan C; Lee S
    BMC Cancer; 2021 Jul; 21(1):777. PubMed ID: 34225682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential or combined designs for Phase I/II clinical trials? A simulation study.
    Rossoni C; Bardet A; Geoerger B; Paoletti X
    Clin Trials; 2019 Dec; 16(6):635-644. PubMed ID: 31538815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes.
    Takeda K; Taguri M; Morita S
    Pharm Stat; 2018 Jul; 17(4):383-395. PubMed ID: 29700965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probability-of-decision interval 3+3 (POD-i3+3) design for phase I dose finding trials with late-onset toxicity.
    Xu Z; Lin X
    Stat Methods Med Res; 2022 Mar; 31(3):534-548. PubMed ID: 34806915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the performance of copula models in phase I-II clinical trials under model misspecification.
    Cunanan K; Koopmeiners JS
    BMC Med Res Methodol; 2014 Apr; 14():51. PubMed ID: 24731155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seamless Phase I/II Adaptive Design for Oncology Trials of Molecularly Targeted Agents.
    Wages NA; Tait C
    J Biopharm Stat; 2015; 25(5):903-20. PubMed ID: 24904956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Ci3+3 design for dual-agent combination dose-finding clinical trials.
    Yuan S; Zhou T; Lin Y; Ji Y
    J Biopharm Stat; 2021 Nov; 31(6):745-764. PubMed ID: 34781853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. uTPI: A utility-based toxicity probability interval design for phase I/II dose-finding trials.
    Shi H; Cao J; Yuan Y; Lin R
    Stat Med; 2021 May; 40(11):2626-2649. PubMed ID: 33650708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose Finding in Immunotherapy and Targeted Therapies.
    Lin R; Zhou Y; Yan F; Li D; Yuan Y
    JCO Precis Oncol; 2020; 4():. PubMed ID: 33283133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Phase I/II adaptive design to determine the optimal treatment regimen from a set of combination immunotherapies in high-risk melanoma.
    Wages NA; Slingluff CL; Petroni GR
    Contemp Clin Trials; 2015 Mar; 41():172-9. PubMed ID: 25638752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CWL: A conditional weighted likelihood method to account for the delayed joint toxicity-efficacy outcomes for phase I/II clinical trials.
    Zhang Y; Zang Y
    Stat Methods Med Res; 2021 Mar; 30(3):892-903. PubMed ID: 33349166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Escalation for Bivariate Binary Endpoints Controlling the Risk of Overtoxicity (EBE-CRO): Managing Efficacy and Toxicity in Early Oncology Clinical Trials.
    Colin P; Delattre M; Minini P; Micallef S
    J Biopharm Stat; 2017; 27(6):1054-1072. PubMed ID: 28375746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dose escalation with over-dose and under-dose controls in Phase I/II clinical trials.
    Chen Z; Yuan Y; Li Z; Kutner M; Owonikoko T; Curran WJ; Khuri F; Kowalski J
    Contemp Clin Trials; 2015 Jul; 43():133-41. PubMed ID: 26012358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies.
    Zhou Y; Lee JJ; Yuan Y
    Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.
    Chen Z; Tighiouart M; Kowalski J
    Contemp Clin Trials; 2012 Sep; 33(5):949-58. PubMed ID: 22561391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose-finding designs for trials of molecularly targeted agents and immunotherapies.
    Chiuzan C; Shtaynberger J; Manji GA; Duong JK; Schwartz GK; Ivanova A; Lee SM
    J Biopharm Stat; 2017; 27(3):477-494. PubMed ID: 28166468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TITE-gBOIN: Time-to-event Bayesian optimal interval design to accelerate dose-finding accounting for toxicity grades.
    Takeda K; Xia Q; Liu S; Rong A
    Pharm Stat; 2022 Mar; 21(2):496-506. PubMed ID: 34862715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy and safety of CD22 chimeric antigen receptor (CAR) T cell therapy in patients with B cell malignancies: a protocol for a systematic review and meta-analysis.
    Adeel K; Fergusson NJ; Shorr R; Atkins H; Hay KA
    Syst Rev; 2021 Jan; 10(1):35. PubMed ID: 33478595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.