BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33226038)

  • 1. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection.
    Wang S; Sun B; Feng J; An F; Li N; Wang H; Tian M
    Anal Methods; 2020 Dec; 12(47):5657-5670. PubMed ID: 33226038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications.
    Wang P; Sun Y; Li X; Wang L; Xu Y; Li G
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants.
    Song D; Yang R; Long F; Zhu A
    J Environ Sci (China); 2019 Jun; 80():14-34. PubMed ID: 30952332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
    Feng J; Li X; Cheng H; Huang W; Kong H; Li Y; Li L
    Mikrochim Acta; 2019 Nov; 186(12):774. PubMed ID: 31728646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection.
    Zhang Y; Xue C; Xu Y; Cui S; Ganeev AA; Kistenev YV; Gubal A; Chuchina V; Jin H; Cui D
    Nano Res; 2023; 16(2):2968-2979. PubMed ID: 36090613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in SERS-based pesticide detection and plausible solutions.
    Bernat A; Samiwala M; Albo J; Jiang X; Rao Q
    J Agric Food Chem; 2019 Nov; 67(45):12341-12347. PubMed ID: 31635458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2,6-dichlorophenol detection based on surface-enhanced Raman scattering.
    Li H; Wang Y; Li Y; Qiao Y; Liu L; Wang Q; Che G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117784. PubMed ID: 31740121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for SERS Detection of Organochlorine Pesticides.
    Moldovan R; Iacob BC; Farcău C; Bodoki E; Oprean R
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33503937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.
    Hu Y; Lu X
    J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy.
    Verma AK; Soni RK
    Nanotechnology; 2019 Sep; 30(38):385502. PubMed ID: 31181546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field.
    Geng L; Huang J; Fang M; Wang H; Liu J; Wang G; Hu M; Sun J; Guo Y; Sun X
    Food Chem; 2024 Jul; 458():140330. PubMed ID: 38970953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures.
    Jin Y; Wang Y; Chen M; Xiao X; Zhang T; Wang J; Jiang K; Fan S; Li Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32369-32376. PubMed ID: 28853546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods.
    Guo Y; Girmatsion M; Li HW; Xie Y; Yao W; Qian H; Abraha B; Mahmud A
    Crit Rev Food Sci Nutr; 2021; 61(21):3555-3568. PubMed ID: 32772549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food.
    Zheng J; He L
    Compr Rev Food Sci Food Saf; 2014 May; 13(3):317-328. PubMed ID: 33412656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile silicone oil-coated hydrophobic surface for surface enhanced Raman spectroscopy of antibiotics.
    Usman M; Guo X; Wu Q; Barman J; Su S; Huang B; Biao T; Zhang Z; Zhan Q
    RSC Adv; 2019 May; 9(25):14109-14115. PubMed ID: 35519331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates.
    Ly NH; Kim MK; Lee H; Lee C; Son SJ; Zoh KD; Vasseghian Y; Joo SW
    J Nanostructure Chem; 2022; 12(5):865-888. PubMed ID: 35757049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy.
    Sun F; Galvan DD; Jain P; Yu Q
    Chem Commun (Camb); 2017 Apr; 53(33):4550-4561. PubMed ID: 28379251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds.
    Allegretto JA; Dostalek J
    Adv Sci (Weinh); 2024 Jun; ():e2401437. PubMed ID: 38868917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.