These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33226061)

  • 1. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-shelled ECIF: improved extended connectivity interaction features for accurate binding affinity prediction.
    Shiota K; Akutsu T
    Bioinform Adv; 2023; 3(1):vbad155. PubMed ID: 37928345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions.
    Wójcikowski M; Kukiełka M; Stepniewska-Dziubinska MM; Siedlecki P
    Bioinformatics; 2019 Apr; 35(8):1334-1341. PubMed ID: 30202917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data.
    Li H; Peng J; Sidorov P; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Bioinformatics; 2019 Oct; 35(20):3989-3995. PubMed ID: 30873528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction.
    Rana MM; Nguyen DD
    Comput Biol Med; 2023 Sep; 164():107250. PubMed ID: 37515872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Improvement of the Performance of Machine Learning Scoring Functions by Incorporating Features of Protein-Bound Water Molecules.
    Qu X; Dong L; Zhang J; Si Y; Wang B
    J Chem Inf Model; 2022 Sep; 62(18):4369-4379. PubMed ID: 36083808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple spatial extension to the extended connectivity interaction features for binding affinity prediction.
    Orhobor OI; Rehim AA; Lou H; Ni H; King RD
    R Soc Open Sci; 2022 May; 9(5):211745. PubMed ID: 35573039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions.
    Shen C; Hu Y; Wang Z; Zhang X; Zhong H; Wang G; Yao X; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 Jan; 22(1):497-514. PubMed ID: 31982914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark.
    Li H; Lu G; Sze KH; Su X; Chan WY; Leung KS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34169324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteo-chemometrics interaction fingerprints of protein-ligand complexes predict binding affinity.
    Wang DD; Xie H; Yan H
    Bioinformatics; 2021 Sep; 37(17):2570-2579. PubMed ID: 33650636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.