These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33226486)

  • 21. Slingshot spiders build tensed, underdamped webs for ultrafast launches and speedy halts.
    Challita EJ; Alexander SLM; Han SI; Blackledge TA; Coddington JA; Jung S; Bhamla MS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Mar; 207(2):205-217. PubMed ID: 33723624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies.
    Kono N; Nakamura H; Mori M; Tomita M; Arakawa K
    Sci Rep; 2020 Sep; 10(1):15721. PubMed ID: 32973264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical behavior of silk during the evolution of orb-web spinning spiders.
    Elices M; Plaza GR; Arnedo MA; Pérez-Rigueiro J; Torres FG; Guinea GV
    Biomacromolecules; 2009 Jul; 10(7):1904-10. PubMed ID: 19505138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders.
    Berger CA; Brewer MS; Kono N; Nakamura H; Arakawa K; Kennedy SR; Wood HM; Adams SA; Gillespie RG
    BMC Ecol Evol; 2021 Mar; 21(1):48. PubMed ID: 33752590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical performance of spider orb webs is tuned for high-speed prey.
    Sensenig AT; Kelly SP; Lorentz KA; Lesher B; Blackledge TA
    J Exp Biol; 2013 Sep; 216(Pt 18):3388-94. PubMed ID: 23966586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compliant threads maximize spider silk connection strength and toughness.
    Meyer A; Pugno NM; Cranford SW
    J R Soc Interface; 2014 Sep; 11(98):20140561. PubMed ID: 25008083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host manipulation by an ichneumonid spider ectoparasitoid that takes advantage of preprogrammed web-building behaviour for its cocoon protection.
    Takasuka K; Yasui T; Ishigami T; Nakata K; Matsumoto R; Ikeda K; Maeto K
    J Exp Biol; 2015 Aug; 218(Pt 15):2326-32. PubMed ID: 26246608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production.
    Blamires SJ; Blackledge TA; Tso IM
    Annu Rev Entomol; 2017 Jan; 62():443-460. PubMed ID: 27959639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncovering changes in spider orb-web topology owing to aerodynamic effects.
    Zaera R; Soler A; Teus J
    J R Soc Interface; 2014 Sep; 11(98):20140484. PubMed ID: 24966235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical characterization of spider webs.
    Das R; Kumar A; Patel A; Vijay S; Saurabh S; Kumar N
    J Mech Behav Biomed Mater; 2017 Mar; 67():101-109. PubMed ID: 27988439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolution of novel animal signals: silk decorations as a model system.
    Walter A; Elgar MA
    Biol Rev Camb Philos Soc; 2012 Aug; 87(3):686-700. PubMed ID: 22309051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.
    Bond JE; Garrison NL; Hamilton CA; Godwin RL; Hedin M; Agnarsson I
    Curr Biol; 2014 Aug; 24(15):1765-71. PubMed ID: 25042592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.
    Joel AC; Kappel P; Adamova H; Baumgartner W; Scholz I
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):568-73. PubMed ID: 26248293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silk elasticity as a potential constraint on spider body size.
    Rodríguez-Gironés MA; Corcobado G; Moya-Laraño J
    J Theor Biol; 2010 Oct; 266(3):430-5. PubMed ID: 20600136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ three-dimensional spider web construction and mechanics.
    Su I; Narayanan N; Logrono MA; Guo K; Bisshop A; Mühlethaler R; Saraceno T; Buehler MJ
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34373329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.
    Elettro H; Neukirch S; Vollrath F; Antkowiak A
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6143-7. PubMed ID: 27185930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders.
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Aug; 209(Pt 16):3131-40. PubMed ID: 16888061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.