These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 33226654)

  • 1. Model adequacy tests for probabilistic models of chromosome-number evolution.
    Rice A; Mayrose I
    New Phytol; 2021 Mar; 229(6):3602-3613. PubMed ID: 33226654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol.
    Rice A; Mayrose I
    Methods Mol Biol; 2023; 2545():175-187. PubMed ID: 36720813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny.
    Glick L; Mayrose I
    Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic models of chromosome number evolution and the inference of polyploidy.
    Mayrose I; Barker MS; Otto SP
    Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep dive into the ancestral chromosome number and genome size of flowering plants.
    Carta A; Bedini G; Peruzzi L
    New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian Model Averaging Approach.
    Freyman WA; Höhna S
    Syst Biol; 2018 Mar; 67(2):195-215. PubMed ID: 28945917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-homogeneous model of chromosome-number evolution to reveal shifts in the transition patterns across the phylogeny.
    Shafir A; Halabi K; Escudero M; Mayrose I
    New Phytol; 2023 May; 238(4):1733-1744. PubMed ID: 36759331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using ChromEvol to Determine the Mode of Chromosomal Evolution.
    Escudero M; Maguilla E; Márquez-Corro JI; Martín-Bravo S; Mayrose I; Shafir A; Tan L; Tribble C; Zenil-Ferguson R
    Methods Mol Biol; 2023; 2672():529-547. PubMed ID: 37335498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).
    McCann J; Schneeweiss GM; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H
    PLoS One; 2016; 11(9):e0162299. PubMed ID: 27611687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evolution of Haploid Chromosome Numbers in the Sunflower Family.
    Mota L; Torices R; Loureiro J
    Genome Biol Evol; 2016 Dec; 8(11):3516-3528. PubMed ID: 27797951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes.
    Escudero M; Martín-Bravo S; Mayrose I; Fernández-Mazuecos M; Fiz-Palacios O; Hipp AL; Pimentel M; Jiménez-Mejías P; Valcárcel V; Vargas P; Luceño M
    PLoS One; 2014; 9(1):e85266. PubMed ID: 24416374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae).
    Márquez-Corro JI; Martín-Bravo S; Spalink D; Luceño M; Escudero M
    Mol Phylogenet Evol; 2019 Jun; 135():203-209. PubMed ID: 30880144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades.
    Carta A; Bedini G; Peruzzi L
    Sci Rep; 2018 Sep; 8(1):14258. PubMed ID: 30250220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'.
    Cusimano N; Sousa A; Renner SS
    Ann Bot; 2012 Mar; 109(4):681-92. PubMed ID: 22210850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based Detection of Whole-Genome Duplications in a Phylogeny.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2020 Sep; 37(9):2734-2746. PubMed ID: 32359154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of rate heterogeneity on inference of phylogenetic models of trait evolution.
    Chira AM; Thomas GH
    J Evol Biol; 2016 Dec; 29(12):2502-2518. PubMed ID: 27653965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.
    Pellicer J; Kelly LJ; Leitch IJ; Zomlefer WB; Fay MF
    New Phytol; 2014 Mar; 201(4):1484-1497. PubMed ID: 24299166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Has the connection between polyploidy and diversification actually been tested?
    Kellogg EA
    Curr Opin Plant Biol; 2016 Apr; 30():25-32. PubMed ID: 26855304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing adequacy for DNA substitution models.
    Chen W; Kenney T; Bielawski J; Gu H
    BMC Bioinformatics; 2019 Jun; 20(1):349. PubMed ID: 31221105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of the art in cytogenetics, insights into chromosome number evolution, and new C-value reports for the fern family Gleicheniaceae.
    Lima LV; Sousa SM; Almeida TE; Salino A
    An Acad Bras Cienc; 2021; 93(suppl 3):e20201881. PubMed ID: 34550205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.