These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 33226775)

  • 21. Revisiting thioflavin T (ThT) fluorescence as a marker of protein fibrillation - The prominent role of electrostatic interactions.
    Arad E; Green H; Jelinek R; Rapaport H
    J Colloid Interface Sci; 2020 Aug; 573():87-95. PubMed ID: 32272300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-Methyl Mesoporphyrin IX as an Effective Probe for Monitoring Alzheimer's Disease β-Amyloid Aggregation in Living Cells.
    Li M; Zhao A; Ren J; Qu X
    ACS Chem Neurosci; 2017 Jun; 8(6):1299-1304. PubMed ID: 28281745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How oxidized EGCG remodels α-synuclein fibrils into non-toxic aggregates: insights from computational simulations.
    Gonçalves PB; Palhano FL; Cordeiro Y; Sodero ACR
    Phys Chem Chem Phys; 2023 Jul; 25(28):19182-19194. PubMed ID: 37431676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Aggregate Weight-Normalized Thioflavin-T Measurement Scale for Characterizing Polymorphic Amyloids and Assembly Intermediates.
    Wetzel R; Chemuru S; Misra P; Kodali R; Mukherjee S; Kar K
    Methods Mol Biol; 2018; 1777():121-144. PubMed ID: 29744831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitized Emission Imaging Allows Nanoscale Surface Polarity Mapping of α-Synuclein Amyloid Fibrils.
    Mahato J; Mukherjee R; Bose A; Mehra S; Gadhe L; Maji SK; Chowdhury A
    ACS Chem Neurosci; 2024 Jan; 15(1):108-118. PubMed ID: 38099928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comparative Study of High-Contrast Fluorescence Lifetime Probes for Imaging Amyloid in Tissue.
    Gorka F; Daly S; Pearson CM; Bulovaite E; Zhang YP; Handa A; Grant SGN; Snaddon TN; Needham LM; Lee SF
    J Phys Chem B; 2021 Dec; 125(50):13710-13717. PubMed ID: 34883017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Insulin Fibril Conformational Differences by Thioflavin-T Binding Characteristics.
    Ziaunys M; Sakalauskas A; Smirnovas V
    Biomacromolecules; 2020 Dec; 21(12):4989-4997. PubMed ID: 33201685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distance-Dependent Tryptophan-Induced Quenching of Thioflavin T Defines the Amyloid Core Architecture.
    Arora L; Bhowmik D; Sawdekar H; Mukhopadhyay S
    J Phys Chem B; 2024 Oct; 128(41):10103-10109. PubMed ID: 39367856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region.
    Ziaunys M; Smirnovas V
    J Phys Chem B; 2019 Oct; 123(41):8727-8732. PubMed ID: 31580671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Ionic Strength on Thioflavin-T Affinity to Amyloid Fibrils and Its Fluorescence Intensity.
    Mikalauskaite K; Ziaunys M; Sneideris T; Smirnovas V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between amyloidophilic dyes and their relevance to studies of amyloid inhibitors.
    Buell AK; Dobson CM; Knowles TP; Welland ME
    Biophys J; 2010 Nov; 99(10):3492-7. PubMed ID: 21081099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Blinking Thioflavin T for Super-resolution Imaging.
    Yang Q; Hosseini E; Yao P; Pütz S; Gelléri M; Bonn M; Parekh SH; Liu X
    J Phys Chem Lett; 2024 Aug; 15(30):7591-7596. PubMed ID: 39028951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40) and Aβ(1-42).
    Lindberg DJ; Wranne MS; Gilbert Gatty M; Westerlund F; Esbjörner EK
    Biochem Biophys Res Commun; 2015 Mar; 458(2):418-23. PubMed ID: 25660454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
    Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H
    Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye.
    Sulatskaya AI; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2012 Mar; 116(8):2538-44. PubMed ID: 22268449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of interaction between cyanine dye T-284 and fibrillar alpha-synuclein.
    Volkova KD; Kovalska VB; Yu Losytskyy M; Veldhuis G; Segers-Nolten GM; Tolmachev OI; Subramaniam V; Yarmoluk SM
    J Fluoresc; 2010 Nov; 20(6):1267-74. PubMed ID: 20490633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical oxidation of benzothiazole dyes for monitoring amyloid formation related to the Alzheimer's disease.
    Veloso AJ; Hung VW; Sindhu G; Constantinof A; Kerman K
    Anal Chem; 2009 Nov; 81(22):9410-5. PubMed ID: 19831357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying prefibrillar amyloids in vitro by using a "thioflavin-like" spectroscopic method.
    Reinke AA; Abulwerdi GA; Gestwicki JE
    Chembiochem; 2010 Sep; 11(13):1889-95. PubMed ID: 20677203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tri- and pentamethine cyanine dyes for fluorescent detection of α-synuclein oligomeric aggregates.
    Kovalska VB; Losytskyy MY; Tolmachev OI; Slominskii YL; Segers-Nolten GM; Subramaniam V; Yarmoluk SM
    J Fluoresc; 2012 Nov; 22(6):1441-8. PubMed ID: 22752431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds.
    Hudson SA; Ecroyd H; Kee TW; Carver JA
    FEBS J; 2009 Oct; 276(20):5960-72. PubMed ID: 19754881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.