These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 33226775)

  • 41. Binding Modes of Thioflavin T on the Surface of Amyloid Fibrils Studied by NMR.
    Ivancic VA; Ekanayake O; Lazo ND
    Chemphyschem; 2016 Aug; 17(16):2461-4. PubMed ID: 27165642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel method for quantitative determination of amyloid fibrils of alpha-synuclein and amyloid beta/A4 protein by using resveratrol.
    Ahn JS; Lee JH; Kim JH; Paik SR
    Anal Biochem; 2007 Aug; 367(2):259-65. PubMed ID: 17597573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanism of Thioflavin-T binding to amyloid fibrils.
    Biancalana M; Koide S
    Biochim Biophys Acta; 2010 Jul; 1804(7):1405-12. PubMed ID: 20399286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent filter-trap assay for amyloid fibril formation kinetics in complex solutions.
    Nasir I; Linse S; Cabaleiro-Lago C
    ACS Chem Neurosci; 2015 Aug; 6(8):1436-44. PubMed ID: 25946560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-field scanning optical microscopy measurements of fluorescent molecular probes binding to insulin amyloid fibrils.
    Kitts CC; Vanden Bout DA
    J Phys Chem B; 2009 Sep; 113(35):12090-5. PubMed ID: 19663402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity.
    Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA
    J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex.
    Yu HJ; Zhao W; Xie M; Li X; Sun M; He J; Wang L; Yu L
    Anal Chem; 2020 Feb; 92(4):2953-2960. PubMed ID: 31941275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils.
    Das A; Dutta T; Gadhe L; Koner AL; Saraogi I
    Anal Chem; 2020 Aug; 92(15):10336-10341. PubMed ID: 32635722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-time analysis of amyloid fibril formation of alpha-synuclein using a fibrillation-state-specific fluorescent probe of JC-1.
    Lee JH; Lee IH; Choe YJ; Kang S; Kim HY; Gai WP; Hahn JS; Paik SR
    Biochem J; 2009 Mar; 418(2):311-23. PubMed ID: 19007333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amyloid fibril formation of alpha-synuclein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases.
    Yagi H; Kusaka E; Hongo K; Mizobata T; Kawata Y
    J Biol Chem; 2005 Nov; 280(46):38609-16. PubMed ID: 16162499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of α-Synuclein Fibril Inhibition by Four Different Amyloid Inhibitors.
    Jha NN; Kumar R; Panigrahi R; Navalkar A; Ghosh D; Sahay S; Mondal M; Kumar A; Maji SK
    ACS Chem Neurosci; 2017 Dec; 8(12):2722-2733. PubMed ID: 28872299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein.
    Thirunavukkuarasu S; Jares-Erijman EA; Jovin TM
    J Mol Biol; 2008 May; 378(5):1064-73. PubMed ID: 18433772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Optimization of Inhibitors of α-Synuclein Fibril Growth: Affinity to the Fibril End as a Crucial Factor.
    Afitska K; Priss A; Yushchenko DA; Shvadchak VV
    J Mol Biol; 2020 Feb; 432(4):967-977. PubMed ID: 31809698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tryptophan-cardanol fluorescent nanoparticles inhibit α-synuclein aggregation and disrupt amyloid fibrils.
    Sunny LP; Srikanth P; Sunitha AK; Tembulkar N; Abraham JN
    J Pept Sci; 2022 Apr; 28(4):e3374. PubMed ID: 34651357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation.
    Liu Y; Carver JA; Calabrese AN; Pukala TL
    Biochim Biophys Acta; 2014 Sep; 1844(9):1481-5. PubMed ID: 24769497
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation.
    Xue C; Lin TY; Chang D; Guo Z
    R Soc Open Sci; 2017 Jan; 4(1):160696. PubMed ID: 28280572
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical and biophysical characterization of pathological aggregation of amyloid proteins.
    Long H; Zeng S; Sun Y; Liu C
    Biophys Rep; 2022 Feb; 8(1):42-54. PubMed ID: 37287686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single fibril growth kinetics of α-synuclein.
    Wördehoff MM; Bannach O; Shaykhalishahi H; Kulawik A; Schiefer S; Willbold D; Hoyer W; Birkmann E
    J Mol Biol; 2015 Mar; 427(6 Pt B):1428-1435. PubMed ID: 25659910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye.
    Sulatskaya AI; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2011 Oct; 115(39):11519-24. PubMed ID: 21863870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates.
    Rajasekhar K; Narayanaswamy N; Murugan NA; Kuang G; Ågren H; Govindaraju T
    Sci Rep; 2016 Apr; 6():23668. PubMed ID: 27032526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.