These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33227310)
21. Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Yang M; Simpson DM; Wenner N; Brownridge P; Harman VM; Hinton JCD; Beynon RJ; Liu LN Nat Commun; 2020 Apr; 11(1):1976. PubMed ID: 32332738 [TBL] [Abstract][Full Text] [Related]
22. Tuning the Catalytic Activity of Subcellular Nanoreactors. Jakobson CM; Chen Y; Slininger MF; Valdivia E; Kim EY; Tullman-Ercek D J Mol Biol; 2016 Jul; 428(15):2989-96. PubMed ID: 27427532 [TBL] [Abstract][Full Text] [Related]
23. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Sutter M; Greber B; Aussignargues C; Kerfeld CA Science; 2017 Jun; 356(6344):1293-1297. PubMed ID: 28642439 [TBL] [Abstract][Full Text] [Related]
24. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell. Gu S; Bradley-Clarke J; Rose RS; Warren MJ; Pickersgill RW J Biol Chem; 2024 Jun; 300(6):107357. PubMed ID: 38735476 [TBL] [Abstract][Full Text] [Related]
25. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. Cheng S; Sinha S; Fan C; Liu Y; Bobik TA J Bacteriol; 2011 Mar; 193(6):1385-92. PubMed ID: 21239588 [TBL] [Abstract][Full Text] [Related]
26. Exploring bacterial organelle interactomes: a model of the protein-protein interaction network in the Pdu microcompartment. Jorda J; Liu Y; Bobik TA; Yeates TO PLoS Comput Biol; 2015 Feb; 11(2):e1004067. PubMed ID: 25646976 [TBL] [Abstract][Full Text] [Related]
27. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. Jakobson CM; Tullman-Ercek D; Slininger MF; Mangan NM PLoS Comput Biol; 2017 May; 13(5):e1005525. PubMed ID: 28475631 [TBL] [Abstract][Full Text] [Related]
28. Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. Havemann GD; Bobik TA J Bacteriol; 2003 Sep; 185(17):5086-95. PubMed ID: 12923081 [TBL] [Abstract][Full Text] [Related]
29. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Chowdhury C; Bobik TA Microbiology (Reading); 2019 Dec; 165(12):1355-1364. PubMed ID: 31674899 [TBL] [Abstract][Full Text] [Related]
30. Protein structures forming the shell of primitive bacterial organelles. Kerfeld CA; Sawaya MR; Tanaka S; Nguyen CV; Phillips M; Beeby M; Yeates TO Science; 2005 Aug; 309(5736):936-8. PubMed ID: 16081736 [TBL] [Abstract][Full Text] [Related]
31. Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy. Sutter M; Faulkner M; Aussignargues C; Paasch BC; Barrett S; Kerfeld CA; Liu LN Nano Lett; 2016 Mar; 16(3):1590-5. PubMed ID: 26617073 [TBL] [Abstract][Full Text] [Related]
32. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. Kinney JN; Salmeen A; Cai F; Kerfeld CA J Biol Chem; 2012 May; 287(21):17729-17736. PubMed ID: 22461622 [TBL] [Abstract][Full Text] [Related]
33. The Wrappers of the 1,2-Propanediol Utilization Bacterial Microcompartments. Bari NK; Kumar G; Sinha S Adv Exp Med Biol; 2018; 1112():333-344. PubMed ID: 30637708 [TBL] [Abstract][Full Text] [Related]
34. Bacterial microcompartment organelles: protein shell structure and evolution. Yeates TO; Crowley CS; Tanaka S Annu Rev Biophys; 2010; 39():185-205. PubMed ID: 20192762 [TBL] [Abstract][Full Text] [Related]
35. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. Bobik TA; Havemann GD; Busch RJ; Williams DS; Aldrich HC J Bacteriol; 1999 Oct; 181(19):5967-75. PubMed ID: 10498708 [TBL] [Abstract][Full Text] [Related]
36. Self-Assembly Stability and Variability of Bacterial Microcompartment Shell Proteins in Response to the Environmental Change. Faulkner M; Zhao LS; Barrett S; Liu LN Nanoscale Res Lett; 2019 Feb; 14(1):54. PubMed ID: 30747342 [TBL] [Abstract][Full Text] [Related]
37. Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Jorda J; Leibly DJ; Thompson MC; Yeates TO Chem Commun (Camb); 2016 Apr; 52(28):5041-4. PubMed ID: 26988700 [TBL] [Abstract][Full Text] [Related]
39. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment. Jakobson CM; Slininger Lee MF; Tullman-Ercek D Protein Sci; 2017 May; 26(5):1086-1092. PubMed ID: 28241402 [TBL] [Abstract][Full Text] [Related]
40. Symmetry breaking and structural polymorphism in a bacterial microcompartment shell protein for choline utilization. Ochoa JM; Nguyen VN; Nie M; Sawaya MR; Bobik TA; Yeates TO Protein Sci; 2020 Nov; 29(11):2201-2212. PubMed ID: 32885887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]