These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33227349)

  • 1. Endocrinology of thermoregulation in birds in a changing climate.
    Ruuskanen S; Hsu BY; Nord A
    Mol Cell Endocrinol; 2021 Jan; 519():111088. PubMed ID: 33227349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.
    Fristoe TS; Burger JR; Balk MA; Khaliq I; Hof C; Brown JH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15934-9. PubMed ID: 26668359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures?
    Mentesana L; Hau M
    Horm Behav; 2022 Jun; 142():105178. PubMed ID: 35561643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive thermoregulation in endotherms may alter responses to climate change.
    Boyles JG; Seebacher F; Smit B; McKechnie AE
    Integr Comp Biol; 2011 Nov; 51(5):676-90. PubMed ID: 21690108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooling requirements fueled the collapse of a desert bird community from climate change.
    Riddell EA; Iknayan KJ; Wolf BO; Sinervo B; Beissinger SR
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21609-21615. PubMed ID: 31570585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocrinology of osmoregulation and thermoregulation of Australian desert tetrapods: A historical perspective.
    Cooper CE
    Gen Comp Endocrinol; 2017 Apr; 244():186-200. PubMed ID: 26449158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.
    Oswald SA; Arnold JM
    Integr Zool; 2012 Jun; 7(2):121-36. PubMed ID: 22691196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive thermoregulation during summer in two populations of an arid-zone passerine.
    Smit B; Harding CT; Hockey PA; McKechnie AE
    Ecology; 2013 May; 94(5):1142-54. PubMed ID: 23858654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change.
    Cockrem JF
    Gen Comp Endocrinol; 2013 Sep; 190():156-63. PubMed ID: 23467071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution.
    Humphries MM; Careau V
    Integr Comp Biol; 2011 Sep; 51(3):419-31. PubMed ID: 21700569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of a biophysical model for predicting avian thermoregulation in the heat.
    Conradie SR; Kearney MR; Wolf BO; Cunningham SJ; Freeman MT; Kemp R; McKechnie AE
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37470124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming.
    Hanna EG; Tait PW
    Int J Environ Res Public Health; 2015 Jul; 12(7):8034-74. PubMed ID: 26184272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoregulation in endotherms: physiological principles and ecological consequences.
    Rezende EL; Bacigalupe LD
    J Comp Physiol B; 2015 Oct; 185(7):709-27. PubMed ID: 26025431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny and phylogeny of endothermy and torpor in mammals and birds.
    Geiser F
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):176-80. PubMed ID: 18499491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.
    Seebacher F; Little AG
    Front Physiol; 2017; 8():575. PubMed ID: 28824463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of the avian bill as a thermoregulatory organ.
    Tattersall GJ; Arnaout B; Symonds MRE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1630-1656. PubMed ID: 27714923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and seasonal variation in thermal sensitivity within North American bird species.
    Cohen JM; Fink D; Zuckerberg B
    Proc Biol Sci; 2023 Nov; 290(2010):20231398. PubMed ID: 37935364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-shifting: changing animal morphologies as a response to climatic warming.
    Ryding S; Klaassen M; Tattersall GJ; Gardner JL; Symonds MRE
    Trends Ecol Evol; 2021 Nov; 36(11):1036-1048. PubMed ID: 34507845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Birds are better at regulating heat loss through their legs than their bills: implications for body shape evolution in response to climate.
    McQueen A; Barnaby R; Symonds MRE; Tattersall GJ
    Biol Lett; 2023 Nov; 19(11):20230373. PubMed ID: 37990562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U; Tingley R; Kearney MR; Sacco M; Palacio AS; Tejedo M; Nicieza AG
    J Anim Ecol; 2020 Jul; 89(7):1722-1734. PubMed ID: 32221971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.