These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33227482)

  • 21. Suppression of a leucine-rich repeat receptor-like kinase enhances host plant resistance to a specialist herbivore.
    Ye M; Kuai P; Hu L; Ye M; Sun H; Erb M; Lou Y
    Plant Cell Environ; 2020 Oct; 43(10):2571-2585. PubMed ID: 32598036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.
    Wang Y; Guo H; Li H; Zhang H; Miao X
    BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation and characterization of indigenous rice (
    Roy D; Biswas A; Sarkar S; Chakraborty G; Gaber A; Kobeasy MI; Hossain A
    PeerJ; 2022; 10():e14360. PubMed ID: 36353600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific.
    Quais MK; Munawar A; Ansari NA; Zhou WW; Zhu ZR
    Sci Rep; 2020 May; 10(1):8051. PubMed ID: 32415213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Desaturase Gene
    Ye W; Zeng J; Hu W; Bustos-Segura C; Noman A; Lou Y
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32532001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isopentylamine is a novel defence compound induced by insect feeding in rice.
    Aboshi T; Iitsuka C; Galis I; Teraishi M; Kamo M; Nishimura A; Ishihara A; Mori N; Murayama T
    Plant Cell Environ; 2021 Jan; 44(1):247-256. PubMed ID: 33034373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Damage of brown planthopper (BPH)
    Deng QQ; Ye M; Wu XB; Song J; Wang J; Chen LN; Zhu ZY; Xie J
    Plant Signal Behav; 2022 Dec; 17(1):2096790. PubMed ID: 35876337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants.
    Liu C; Du B; Hao F; Lei H; Wan Q; He G; Wang Y; Tang H
    Plant Biotechnol J; 2017 Oct; 15(10):1346-1357. PubMed ID: 28278368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current understanding of the molecular players involved in resistance to rice planthoppers.
    Ling Y; Ang L; Weilin Z
    Pest Manag Sci; 2019 Oct; 75(10):2566-2574. PubMed ID: 31095858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper.
    Zhou C; Zhang Q; Chen Y; Huang J; Guo Q; Li Y; Wang W; Qiu Y; Guan W; Zhang J; Guo J; Shi S; Wu D; Zheng X; Nie L; Tan J; Huang C; Ma Y; Yang F; Fu X; Du B; Zhu L; Chen R; Li Z; Yuan L; He G
    J Integr Plant Biol; 2021 Oct; 63(10):1695-1711. PubMed ID: 34302720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation.
    Huang HJ; Liu CW; Xu HJ; Bao YY; Zhang CX
    J Insect Physiol; 2017 Apr; 98():223-230. PubMed ID: 28115117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice.
    Ren J; Gao F; Wu X; Lu X; Zeng L; Lv J; Su X; Luo H; Ren G
    Sci Rep; 2016 Nov; 6():37645. PubMed ID: 27876888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of diet-associated responses in two rice planthopper species.
    Huang HJ; Cui JR; Hong XY
    BMC Genomics; 2020 Aug; 21(1):565. PubMed ID: 32807078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of two Bt rice lines T2A-1 and T1C-19 on the ecological fitness and detoxification enzymes of Nilaparvata lugens (Hemiptera: Delphacidae) from different populations.
    Yang Y; He J; Dong B; Xu H; Fu Q; Zheng X; Lin Y; Lu Z
    J Econ Entomol; 2013 Aug; 106(4):1887-93. PubMed ID: 24020307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell culture of the rice brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae).
    Xu Y; Chen YH; Yu X
    In Vitro Cell Dev Biol Anim; 2014; 50(5):384-8. PubMed ID: 24399256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels.
    Nanda S; Yuan SY; Lai FX; Wang WX; Fu Q; Wan PJ
    Sci Rep; 2020 Nov; 10(1):19093. PubMed ID: 33154527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence.
    Ji R; Yu H; Fu Q; Chen H; Ye W; Li S; Lou Y
    PLoS One; 2013; 8(11):e79612. PubMed ID: 24244529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The control of the brown planthopper by the rice Bph14 gene is affected by nitrogen.
    Sun Z; Shi JH; Fan T; Wang C; Liu L; Jin H; Foba CN; Wang MQ
    Pest Manag Sci; 2020 Nov; 76(11):3649-3656. PubMed ID: 32418333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards understanding of molecular interactions between rice and the brown planthopper.
    Cheng X; Zhu L; He G
    Mol Plant; 2013 May; 6(3):621-34. PubMed ID: 23396040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper.
    Tan J; Wu Y; Guo J; Li H; Zhu L; Chen R; He G; Du B
    BMC Genomics; 2020 Feb; 21(1):144. PubMed ID: 32041548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.