These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33227705)

  • 1. Incorporating SULF1 polymorphisms in a pretreatment CT-based radiomic model for predicting platinum resistance in ovarian cancer treatment.
    Yi X; Liu Y; Zhou B; Xiang W; Deng A; Fu Y; Zhao Y; Ouyang Q; Liu Y; Sun Z; Zhang K; Li X; Zeng F; Zhou H; Chen BT
    Biomed Pharmacother; 2021 Jan; 133():111013. PubMed ID: 33227705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rs3802278 in 3'-UTR of
    Zeng F; Liu Y; Ouyang Q; Sun Z; Zhang K; Li X; Liu Y
    J Chemother; 2021 Dec; 33(8):564-569. PubMed ID: 34029511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram].
    Mao MM; Li HM; Shi J; Qiu QS; Feng F
    Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):201-208. PubMed ID: 35042289
    [No Abstract]   [Full Text] [Related]  

  • 4. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer.
    Dressman HK; Berchuck A; Chan G; Zhai J; Bild A; Sayer R; Cragun J; Clarke J; Whitaker RS; Li L; Gray J; Marks J; Ginsburg GS; Potti A; West M; Nevins JR; Lancaster JM
    J Clin Oncol; 2007 Feb; 25(5):517-25. PubMed ID: 17290060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures.
    Yu KH; Levine DA; Zhang H; Chan DW; Zhang Z; Snyder M
    J Proteome Res; 2016 Aug; 15(8):2455-65. PubMed ID: 27312948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma.
    Zheng HD; Huang QY; Huang QM; Ke XT; Ye K; Lin S; Xu JH
    World J Gastrointest Oncol; 2024 Mar; 16(3):819-832. PubMed ID: 38577440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habitat Radiomics Based on MRI for Predicting Platinum Resistance in Patients with High-Grade Serous Ovarian Carcinoma: A Multicenter Study.
    Bi Q; Miao K; Xu N; Hu F; Yang J; Shi W; Lei Y; Wu Y; Song Y; Ai C; Li H; Qiang J
    Acad Radiol; 2024 Jun; 31(6):2367-2380. PubMed ID: 38129227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an
    Wang H; Zhao S; Li L; Tian R
    Eur Radiol; 2020 Oct; 30(10):5578-5587. PubMed ID: 32435928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study.
    Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY
    Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Computed Tomography-Based Radiomics Signature to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer.
    Wang W; Peng Y; Feng X; Zhao Y; Seeruttun SR; Zhang J; Cheng Z; Li Y; Liu Z; Zhou Z
    JAMA Netw Open; 2021 Aug; 4(8):e2121143. PubMed ID: 34410397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?
    Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X
    Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: a case control study.
    Ou J; Li R; Zeng R; Wu CQ; Chen Y; Chen TW; Zhang XM; Wu L; Jiang Y; Yang JQ; Cao JM; Tang S; Tang MJ; Hu J
    Cancer Imaging; 2019 Oct; 19(1):66. PubMed ID: 31619297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
    Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C
    Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics.
    Chen W; Wang S; Dong D; Gao X; Zhou K; Li J; Lv B; Li H; Wu X; Fang M; Tian J; Xu M
    Front Oncol; 2019; 9():1265. PubMed ID: 31824847
    [No Abstract]   [Full Text] [Related]  

  • 17. Multi-gene expression predictors of single drug responses to adjuvant chemotherapy in ovarian carcinoma: predicting platinum resistance.
    Ferriss JS; Kim Y; Duska L; Birrer M; Levine DA; Moskaluk C; Theodorescu D; Lee JK
    PLoS One; 2012; 7(2):e30550. PubMed ID: 22348014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma.
    Xu F; Zhu W; Shen Y; Wang J; Xu R; Qutesh C; Song L; Gan Y; Pu C; Hu H
    Front Oncol; 2020; 10():872. PubMed ID: 32850301
    [No Abstract]   [Full Text] [Related]  

  • 19. Poor outcome of elderly patients with platinum-sensitive recurrent ovarian cancer: results from the SOCRATES retrospective study.
    Pignata S; Ferrandina G; Scarfone G; Scollo P; Odicino F; Cormio G; Katsaros D; Frigerio L; Mereu L; Ghezzi F; Manzione L; Lauria R; Breda E; Alletti DG; Ballardini M; Vernaglia A; Sorio R; Tumolo S; Musso P; Magni G; Pisano C; Morabito A
    Crit Rev Oncol Hematol; 2009 Sep; 71(3):233-41. PubMed ID: 19179095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma.
    Lin P; Yang PF; Chen S; Shao YY; Xu L; Wu Y; Teng W; Zhou XZ; Li BH; Luo C; Xu LM; Huang M; Niu TY; Ye ZM
    Cancer Imaging; 2020 Jan; 20(1):7. PubMed ID: 31937372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.