These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Toward 3D Printing of Medical Implants: Reduced Lateral Droplet Spreading of Silicone Rubber under Intense IR Curing. Stieghorst J; Majaura D; Wevering H; Doll T ACS Appl Mater Interfaces; 2016 Mar; 8(12):8239-46. PubMed ID: 26967063 [TBL] [Abstract][Full Text] [Related]
3. Overview of current additive manufacturing technologies and selected applications. Horn TJ; Harrysson OL Sci Prog; 2012; 95(Pt 3):255-82. PubMed ID: 23094325 [TBL] [Abstract][Full Text] [Related]
4. Design of Experiment Evaluation of a 2.5D Printing Process for Implantable PDMS-based Neural Interfaces. Baslan Y; Stieglitz T; Kiele P Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6433-6436. PubMed ID: 34892584 [TBL] [Abstract][Full Text] [Related]
5. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. Mehrpouya M; Vahabi H; Barletta M; Laheurte P; Langlois V Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112216. PubMed ID: 34225868 [TBL] [Abstract][Full Text] [Related]
6. Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials. Bouzin M; Zeynali A; Marini M; Sironi L; Scodellaro R; D'Alfonso L; Collini M; Chirico G Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502787 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Youssef A; Hollister SJ; Dalton PD Biofabrication; 2017 Feb; 9(1):012002. PubMed ID: 28245199 [TBL] [Abstract][Full Text] [Related]
8. Comparison of different three dimensional-printed resorbable materials: In vitro biocompatibility, In vitro degradation rate, and cell differentiation support. Raddatz L; Kirsch M; Geier D; Schaeske J; Acreman K; Gentsch R; Jones S; Karau A; Washington T; Stiesch M; Becker T; Beutel S; Scheper T; Lavrentieva A J Biomater Appl; 2018 Aug; 33(2):281-294. PubMed ID: 30004265 [TBL] [Abstract][Full Text] [Related]
9. 3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer. Luis E; Pan HM; Sing SL; Bajpai R; Song J; Yeong WY Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370046 [TBL] [Abstract][Full Text] [Related]
10. Modeling and application of anisotropic hyperelasticity of PDMS polymers with surface patterns obtained by additive manufacturing technology. Lee HM; Sung J; Ko B; Lee H; Park S; So H; Yoon GH J Mech Behav Biomed Mater; 2021 Jun; 118():104412. PubMed ID: 33667928 [TBL] [Abstract][Full Text] [Related]
12. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Sing SL; An J; Yeong WY; Wiria FE J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900 [TBL] [Abstract][Full Text] [Related]
13. Parylene-coated metal tracks for neural electrode arrays - fabrication approaches and improvements utilizing different laser systems. Kohler F; Schuettler M; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5130-3. PubMed ID: 23367083 [TBL] [Abstract][Full Text] [Related]
14. Rapid manufacturing techniques for the tissue engineering of human heart valves. Lueders C; Jastram B; Hetzer R; Schwandt H Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052 [TBL] [Abstract][Full Text] [Related]
15. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis. Revilla León M; Klemm IM; García-Arranz J; Özcan M Eur J Prosthodont Restor Dent; 2017 Sep; 25(3):143-147. PubMed ID: 28869368 [TBL] [Abstract][Full Text] [Related]
16. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Tan XP; Tan YJ; Chow CSL; Tor SB; Yeong WY Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1328-1343. PubMed ID: 28482501 [TBL] [Abstract][Full Text] [Related]
17. Single-Step Fabrication Method toward 3D Printing Composite Diamond-Titanium Interfaces for Neural Applications. Mani N; Ahnood A; Peng D; Tong W; Booth M; Jones A; Murdoch B; Tran N; Houshyar S; Fox K ACS Appl Mater Interfaces; 2021 Jul; 13(27):31474-31484. PubMed ID: 34192459 [TBL] [Abstract][Full Text] [Related]
18. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Afanasenkau D; Kalinina D; Lyakhovetskii V; Tondera C; Gorsky O; Moosavi S; Pavlova N; Merkulyeva N; Kalueff AV; Minev IR; Musienko P Nat Biomed Eng; 2020 Oct; 4(10):1010-1022. PubMed ID: 32958898 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Soft Sensor Using Laser Processing Techniques: For the Alternative 3D Printing Process. Seo M; Hwang S; Hwang T; Yeo J Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31547277 [TBL] [Abstract][Full Text] [Related]
20. Design of Additively Manufactured Structures for Biomedical Applications: A Review of the Additive Manufacturing Processes Applied to the Biomedical Sector. Calignano F; Galati M; Iuliano L; Minetola P J Healthc Eng; 2019; 2019():9748212. PubMed ID: 30992744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]