These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33228050)

  • 1. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.
    Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A
    Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications.
    Gomez-Sjoberg R; Leyrat AA; Houseman BT; Shokat K; Quake SR
    Anal Chem; 2010 Nov; 82(21):8954-60. PubMed ID: 20936785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological implications of polydimethylsiloxane-based microfluidic cell culture.
    Regehr KJ; Domenech M; Koepsel JT; Carver KC; Ellison-Zelski SJ; Murphy WL; Schuler LA; Alarid ET; Beebe DJ
    Lab Chip; 2009 Aug; 9(15):2132-9. PubMed ID: 19606288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse liquid-solid chromatography to evaluate drug interactions with organosilane-modified polydimethylsiloxane for use in body-on-a-chip systems.
    Schnepper M; Roles J; Hickman JJ
    Biotechnol Prog; 2020 Nov; 36(6):e3048. PubMed ID: 32663376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
    Markov DA; Lillie EM; Garbett SP; McCawley LJ
    Biomed Microdevices; 2014 Feb; 16(1):91-6. PubMed ID: 24065585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications.
    Bakshi S; Pandey K; Bose S; Gunjan ; Paul D; Nayak R
    J Colloid Interface Sci; 2019 Sep; 552():34-42. PubMed ID: 31102847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass-based organ-on-a-chip device for restricting small molecular absorption.
    Hirama H; Satoh T; Sugiura S; Shin K; Onuki-Nagasaki R; Kanamori T; Inoue T
    J Biosci Bioeng; 2019 May; 127(5):641-646. PubMed ID: 30473393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchtop micromolding of polystyrene by soft lithography.
    Wang Y; Balowski J; Phillips C; Phillips R; Sims CE; Allbritton NL
    Lab Chip; 2011 Sep; 11(18):3089-97. PubMed ID: 21811715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices.
    Kaneda S; Ono K; Fukuba T; Nojima T; Yamamoto T; Fujii T
    Anal Sci; 2012; 28(1):39-44. PubMed ID: 22232222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.
    Zilio C; Sola L; Damin F; Faggioni L; Chiari M
    Biomed Microdevices; 2014 Feb; 16(1):107-14. PubMed ID: 24037663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification for PDMS-based microfluidic devices.
    Zhou J; Khodakov DA; Ellis AV; Voelcker NH
    Electrophoresis; 2012 Jan; 33(1):89-104. PubMed ID: 22128067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.