These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 33228536)
21. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworms Manduca sexta. Park Y; Kim Y; Tunaz H; Stanley DW J Invertebr Pathol; 2004 Jul; 86(3):65-71. PubMed ID: 15261769 [TBL] [Abstract][Full Text] [Related]
22. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. Kim H; Keum S; Hasan A; Kim H; Jung Y; Lee D; Kim Y J Invertebr Pathol; 2018 Nov; 159():6-17. PubMed ID: 30389324 [TBL] [Abstract][Full Text] [Related]
23. Symbiosis, virulence and natural-product biosynthesis in entomopathogenic bacteria are regulated by a small RNA. Neubacher N; Tobias NJ; Huber M; Cai X; Glatter T; Pidot SJ; Stinear TP; Lütticke AL; Papenfort K; Bode HB Nat Microbiol; 2020 Dec; 5(12):1481-1489. PubMed ID: 33139881 [TBL] [Abstract][Full Text] [Related]
24. Variations of Indole Metabolites and NRPS-PKS Loci in Two Different Virulent Strains of Mollah MMI; Roy MC; Choi DY; Hasan MA; Al Baki MA; Yeom HS; Kim Y Front Microbiol; 2020; 11():583594. PubMed ID: 33329448 [No Abstract] [Full Text] [Related]
25. Eicosanoid mediation of immune responses at early bacterial infection stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Kim H; Choi D; Jung J; Kim Y Arch Insect Biochem Physiol; 2018 Dec; 99(4):e21502. PubMed ID: 30120792 [TBL] [Abstract][Full Text] [Related]
26. Screening and Molecular Identification of Bacteria from the Midgut of Skowronek M; Sajnaga E; Kazimierczak W; Lis M; Wiater A Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769435 [TBL] [Abstract][Full Text] [Related]
27. Bacteria from the Midgut of Common Cockchafer ( Skowronek M; Sajnaga E; Pleszczyńska M; Kazimierczak W; Lis M; Wiater A Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963214 [TBL] [Abstract][Full Text] [Related]
28. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970 [TBL] [Abstract][Full Text] [Related]
30. Phurealipids, produced by the entomopathogenic bacteria, Photorhabdus, mimic juvenile hormone to suppress insect immunity and immature development. Ahmed S; Tafim Hossain Hrithik M; Chandra Roy M; Bode H; Kim Y J Invertebr Pathol; 2022 Sep; 193():107799. PubMed ID: 35850258 [TBL] [Abstract][Full Text] [Related]
31. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. Eom S; Park Y; Kim H; Kim Y J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195 [TBL] [Abstract][Full Text] [Related]
32. Nitric Oxide Mediates Insect Cellular Immunity via Phospholipase A2 Activation. Sadekuzzaman M; Stanley D; Kim Y J Innate Immun; 2018; 10(1):70-81. PubMed ID: 29035888 [TBL] [Abstract][Full Text] [Related]
34. Screening of insect immune suppressors using a recombinant phospholipase A2 of a lepidopteran insect. Jin G; Kim Y Arch Insect Biochem Physiol; 2024 Jan; 115(1):e22081. PubMed ID: 38288493 [TBL] [Abstract][Full Text] [Related]
35. Functional interaction of bacterial virulence factors of Xenorhabdus nematophila with a calcium-independent cytosolic PLA Mohammad V; Kim Y J Invertebr Pathol; 2020 Jan; 169():107309. PubMed ID: 31857124 [TBL] [Abstract][Full Text] [Related]
36. Rearing and injection of Manduca sexta larvae to assess bacterial virulence. Hussa E; Goodrich-Blair H J Vis Exp; 2012 Dec; (70):e4295. PubMed ID: 23271332 [TBL] [Abstract][Full Text] [Related]
37. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Hasan MA; Ahmed S; Kim Y Insect Biochem Mol Biol; 2019 Aug; 111():103179. PubMed ID: 31255640 [TBL] [Abstract][Full Text] [Related]
38. A study on Xenorhabdus and Photorhabdus isolates from Northeastern Thailand: Identification, antibacterial activity, and association with entomopathogenic nematode hosts. Yimthin T; Fukruksa C; Muangpat P; Dumidae A; Wattanachaiyingcharoen W; Vitta A; Thanwisai A PLoS One; 2021; 16(8):e0255943. PubMed ID: 34383819 [TBL] [Abstract][Full Text] [Related]
39. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Aymeric JL; Givaudan A; Duvic B Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393 [TBL] [Abstract][Full Text] [Related]
40. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). Eroglu C; Cimen H; Ulug D; Karagoz M; Hazir S; Cakmak I J Invertebr Pathol; 2019 Jan; 160():61-66. PubMed ID: 30528928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]