These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33229016)

  • 41. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Guided image generation for improved surgical image segmentation.
    Colleoni E; Sanchez Matilla R; Luengo I; Stoyanov D
    Med Image Anal; 2024 Oct; 97():103263. PubMed ID: 39013205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SinGAN-Seg: Synthetic training data generation for medical image segmentation.
    Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA
    PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Progressive Transmission of Medical Images via a Bank of Generative Adversarial Networks.
    Chang CC; Wang X; Horng JH; Echizen I
    J Healthc Eng; 2021; 2021():9917545. PubMed ID: 34007430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Beyond Mutual Information: Generative Adversarial Network for Domain Adaptation Using Information Bottleneck Constraint.
    Chen J; Zhang Z; Xie X; Li Y; Xu T; Ma K; Zheng Y
    IEEE Trans Med Imaging; 2022 Mar; 41(3):595-607. PubMed ID: 34606453
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Training data enhancements for improving colonic polyp detection using deep convolutional neural networks.
    de Almeida Thomaz V; Sierra-Franco CA; Raposo AB
    Artif Intell Med; 2021 Jan; 111():101988. PubMed ID: 33461694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GANs for medical image analysis.
    Kazeminia S; Baur C; Kuijper A; van Ginneken B; Navab N; Albarqouni S; Mukhopadhyay A
    Artif Intell Med; 2020 Sep; 109():101938. PubMed ID: 34756215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pix2xray: converting RGB images into X-rays using generative adversarial networks.
    Haiderbhai M; Ledesma S; Lee SC; Seibold M; Fürnstahl P; Navab N; Fallavollita P
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):973-980. PubMed ID: 32342258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation.
    Li Q; Yu Z; Wang Y; Zheng H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generative Adversarial Networks in Cardiology.
    Skandarani Y; Lalande A; Afilalo J; Jodoin PM
    Can J Cardiol; 2022 Feb; 38(2):196-203. PubMed ID: 34780990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Domain-specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks.
    Gadermayr M; Li K; Müller M; Truhn D; Krämer N; Merhof D; Gess B
    J Magn Reson Imaging; 2019 Jun; 49(6):1676-1683. PubMed ID: 30623506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generative Adversarial Network with Multi-branch Discriminator for imbalanced cross-species image-to-image translation.
    Zheng Z; Yu Z; Wu Y; Zheng H; Zheng B; Lee M
    Neural Netw; 2021 Sep; 141():355-371. PubMed ID: 33962124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation.
    Abdelmotaal H; Abdou AA; Omar AF; El-Sebaity DM; Abdelazeem K
    Transl Vis Sci Technol; 2021 Jun; 10(7):21. PubMed ID: 34132759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MedGAN: Medical image translation using GANs.
    Armanious K; Jiang C; Fischer M; Küstner T; Hepp T; Nikolaou K; Gatidis S; Yang B
    Comput Med Imaging Graph; 2020 Jan; 79():101684. PubMed ID: 31812132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks.
    Rühle B; Krumrey JF; Hodoroaba VD
    Sci Rep; 2021 Mar; 11(1):4942. PubMed ID: 33654161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.