BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33229094)

  • 1. Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals.
    Xie X; Cheng H
    Sci Total Environ; 2021 Feb; 757():143765. PubMed ID: 33229094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides.
    Chen WR; Huang CH
    J Hazard Mater; 2012 Aug; 227-228():378-85. PubMed ID: 22695387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions.
    Wang LY; Wang SW; Chen WR
    Chemosphere; 2016 Jun; 152():423-30. PubMed ID: 26999752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Reactivity Relationships in the Adsorption and Degradation of Substituted Phenylarsonic Acids on Birnessite (δ-MnO
    Zhao W; Cheng H; Tao S
    Environ Sci Technol; 2020 Feb; 54(3):1475-1483. PubMed ID: 31770486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characteristics of humic-like acid from microbial utilization of lignin involving different mineral types.
    Wang S; Xu J; Zhang X; Wang Y; Fan J; Liu L; Wang N; Chen D
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23923-23936. PubMed ID: 31222654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of roxarsone onto soils with different physicochemical properties.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Sep; 159():103-112. PubMed ID: 27281543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe
    Hu Q; Liu Y; Gu X; Zhao Y
    Chemosphere; 2017 Aug; 181():328-336. PubMed ID: 28453965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification.
    Jun JW; Tong M; Jung BK; Hasan Z; Zhong C; Jhung SH
    Chemistry; 2015 Jan; 21(1):347-54. PubMed ID: 25298118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of organic and inorganic substituents of roxarsone determines its binding behavior and mechanisms onto nano-ferrihydrite colloidal particles.
    Lei M; Huang Y; Zhou Y; Mensah CO; Wei D; Li B
    J Environ Sci (China); 2023 Jul; 129():30-44. PubMed ID: 36804240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface.
    Nachtegaal M; Sparks DL
    J Colloid Interface Sci; 2004 Aug; 276(1):13-23. PubMed ID: 15219425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the interaction of fulvic acid with Pb(II) on the distribution of Pb(II) between solid and liquid phases of four minerals.
    Guo LY; He X; Hong ZN; Xu RK
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):68680-68691. PubMed ID: 35543790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite.
    Zhang H; Taujale S; Huang J; Lee GJ
    Langmuir; 2015 Mar; 31(9):2790-9. PubMed ID: 25652230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr)oxides: in-situ ATR-FTIR studies.
    Depalma S; Cowen S; Hoang T; Al-Abadleh HA
    Environ Sci Technol; 2008 Mar; 42(6):1922-7. PubMed ID: 18409614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption site-dependent transport of diclofenac in water saturated minerals and reference soils.
    Yu C; Bi E
    Chemosphere; 2019 Dec; 236():124256. PubMed ID: 31319305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism for enhancing phosphate immobilization on colloids of oxisol, ultisol, hematite, and gibbsite by chitosan.
    Nkoh JN; Li KW; Shi YX; Li JY; Xu RK
    Chemosphere; 2022 Dec; 309(Pt 1):136749. PubMed ID: 36209864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of Ag species in presence of aquatic sediment minerals - In context of aquatic environmental safety.
    Kyziol-Komosinska J; Dzieniszewska A; Franus W; Rzepa G
    J Contam Hydrol; 2020 Jun; 232():103606. PubMed ID: 32081515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures.
    Li Z; Liu X; Jin W; Hu Q; Zhao Y
    J Colloid Interface Sci; 2019 Oct; 554():692-704. PubMed ID: 31352244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid.
    Wang L; Cheng H
    Environ Sci Technol; 2015 Mar; 49(6):3473-81. PubMed ID: 25679412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption and abiotic transformation of monensin by iron and manganese oxides.
    Hafner SC; Parikh SJ
    Chemosphere; 2020 Aug; 253():126623. PubMed ID: 32302916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.