These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 332293)
1. The metabolism of phenylacetic acid by Aspergillus fumigatus ATCC 28282: identification of 2,6-dihydroxyphenylacetic acid. Yoshizako F; Chubachi M; Nishimura A; Ueno T Can J Microbiol; 1977 Sep; 23(9):1140-4. PubMed ID: 332293 [TBL] [Abstract][Full Text] [Related]
2. Conversion of p-coumaric acid to caffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid by Alnus rubra. Li CY Lloydia; 1977; 40(3):298-30. PubMed ID: 895387 [No Abstract] [Full Text] [Related]
3. Microbial metabolism of phenolic amines: degradation of dl-synephrine by an unidentified arthrobacter. Devi NA; Kutty RK; Vasantharajan VN; Subba RAO PV J Bacteriol; 1975 Jun; 122(3):866-73. PubMed ID: 1150621 [TBL] [Abstract][Full Text] [Related]
4. The phenylacetic acid uptake system of Aspergillus nidulans is under a creA-independent model of catabolic repression which seems to be mediated by acetyl-CoA. Fernández-Cañón JM; Luengo JM J Antibiot (Tokyo); 1997 Jan; 50(1):45-52. PubMed ID: 9066765 [TBL] [Abstract][Full Text] [Related]
5. Metabolism and efflux of [3H]dopamine in rat neostriatum: presynaptic origin of 3,4-[3H]dihydroxyphenylacetic acid. Cubeddu LX; Hoffmann IS; Ferrari GB J Pharmacol Exp Ther; 1979 May; 209(2):165-75. PubMed ID: 255152 [No Abstract] [Full Text] [Related]
6. The formation of homogentisic acid from phenylacetic acid by an Aspergillus sp. Ueno T; Yoshizako F; Nishimura A Can J Microbiol; 1973 Mar; 19(3):393-5. PubMed ID: 4572485 [No Abstract] [Full Text] [Related]
7. Evidences for a direct action in striatum of dopaminergic receptor antagonists mediating DOPAC formation. Racagni G; Groppetti A; Parenti M; Bugatti A; Bruno F; Maggi A; Cattabeni F Life Sci; 1978 Oct; 23(17-18):1757-61. PubMed ID: 723449 [No Abstract] [Full Text] [Related]
8. Simultaneous determination by GC-MS-SIM of o-, m-, p-hydroxyphenylacetic acid, 3:4-dihydroxyphenylacetic acid and homovanillic acid in biological samples using a common selected ion. Narasimhachari N; Prakash U; Helgeson E; Davis JM J Chromatogr Sci; 1978 Jun; 16(6):263-7. PubMed ID: 670373 [TBL] [Abstract][Full Text] [Related]
9. Catabolism of 3- and 4-hydroxyphenylacetic acid by Klebsiella pneumoniae. Martín M; Gibello A; Fernández J; Ferrer E; Garrido-Pertierra A J Gen Microbiol; 1991 Mar; 137(3):621-8. PubMed ID: 1851804 [TBL] [Abstract][Full Text] [Related]
10. Production of phenylacetic and hydroxyphenylacetic acids by clostridium botulinum type G. Moss CW; Hatheway CL; Lambert MA; McCroskey LM J Clin Microbiol; 1980 Jun; 11(6):743-5. PubMed ID: 7000821 [TBL] [Abstract][Full Text] [Related]
11. Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. Dedek J; Baumes R; Tien-Duc N; Gomeni R; Korf J J Neurochem; 1979 Sep; 33(3):687-95. PubMed ID: 479883 [No Abstract] [Full Text] [Related]
12. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil. O'Connor KE; O'Leary NP; Marchesi JR; Dobson AD; Duetz W Chemosphere; 2005 Nov; 61(7):965-73. PubMed ID: 15869782 [TBL] [Abstract][Full Text] [Related]
13. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Monagas M; Khan N; Andrés-Lacueva C; Urpí-Sardá M; Vázquez-Agell M; Lamuela-Raventós RM; Estruch R Br J Nutr; 2009 Jul; 102(2):201-6. PubMed ID: 19586571 [TBL] [Abstract][Full Text] [Related]
14. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species. Klages U; Markus A; Lingens F J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006 [TBL] [Abstract][Full Text] [Related]
16. Degradation of 4-hydroxyphenylacetic acid by Trichosporon cutaneum. Sparnins VL; Anderson JJ; Omans J; Dagley S J Bacteriol; 1978 Oct; 136(1):449-51. PubMed ID: 30749 [TBL] [Abstract][Full Text] [Related]
17. Two new derivatives of 2, 5-dihydroxyphenylacetic acid from the kernel of Entada phaseoloides. Chen L; Zhang Y; Ding G; Ba M; Guo Y; Zou Z Molecules; 2013 Jan; 18(2):1477-82. PubMed ID: 23353120 [TBL] [Abstract][Full Text] [Related]
18. [Microbial degradation and 4-chlorophenylacetic acid. Chemical synthesis of 3-chloro-4-hydroxy-, 4-chloro-3-hydroxy- and 4-chloro-2-hydroxyphenylacetic acid (author's transl)]. Markus A; Klages U; Lingens F Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):431-7. PubMed ID: 7076135 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of dopamine uptake and 3,4-dihydroxyphenylacetic acid (DOPAC) formation in the dopaminergic terminals of the neurointermediate lobe of the pituitary gland. Annunziato L; Weiner RI Neuroendocrinology; 1980 Jul; 31(1):8-12. PubMed ID: 7393406 [TBL] [Abstract][Full Text] [Related]
20. Enzymology and subcellular localization of aldehyde oxidation in rat liver. Oxidation of 3,4-dihydroxyphenylacetaldehyde derived from dopamine to 3,4-dihydroxyphenylacetic acid. Tank AW; Weiner H; Thurman JA Biochem Pharmacol; 1981 Dec; 30(24):3265-75. PubMed ID: 7034733 [No Abstract] [Full Text] [Related] [Next] [New Search]