BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 33229321)

  • 21. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Meisel R
    N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107195
    [No Abstract]   [Full Text] [Related]  

  • 22. [Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals].
    Li GL; Yang SX; Wu ZF; Zhang XW
    Yi Chuan; 2020 Jul; 42(7):641-656. PubMed ID: 32694104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply.
    Frangoul H; Ho TW; Corbacioglu S
    N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107197
    [No Abstract]   [Full Text] [Related]  

  • 24. [Advances in AAV-CRISPR/Cas9-Mediated Hemophilia A Gene Therapy --Review].
    Fang S; Wang G; Yang LH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2023 Dec; 31(6):1890-1893. PubMed ID: 38071078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia.
    Parums DV
    Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9.
    Zarei A; Razban V; Hosseini SE; Tabei SMB
    J Gene Med; 2019 Apr; 21(4):e3082. PubMed ID: 30786106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.
    Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L
    Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. β-Thalassemia gene editing therapy: Advancements and difficulties.
    Hu J; Zhong Y; Xu P; Xin L; Zhu X; Jiang X; Gao W; Yang B; Chen Y
    Medicine (Baltimore); 2024 May; 103(18):e38036. PubMed ID: 38701251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation.
    Lin J; Zhou Y; Liu J; Chen J; Chen W; Zhao S; Wu Z; Wu N
    J Cell Biochem; 2017 Oct; 118(10):3061-3071. PubMed ID: 28590031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine.
    Zheng R; Zhang L; Parvin R; Su L; Chi J; Shi K; Ye F; Huang X
    Adv Sci (Weinh); 2023 Sep; 10(25):e2300195. PubMed ID: 37356052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid and polymer mediated CRISPR/Cas9 gene editing.
    Gong Y; Tian S; Xuan Y; Zhang S
    J Mater Chem B; 2020 May; 8(20):4369-4386. PubMed ID: 32364557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.
    Morishige S; Mizuno S; Ozawa H; Nakamura T; Mazahery A; Nomura K; Seki R; Mouri F; Osaki K; Yamamura K; Okamura T; Nagafuji K
    Int J Hematol; 2020 Feb; 111(2):225-233. PubMed ID: 31664646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Application of CRISPR/Cas9 mediated gene editing in trees].
    Chen YN; Lu J
    Yi Chuan; 2020 Jul; 42(7):657-668. PubMed ID: 32694105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.
    Chakraborty C; Teoh SL; Das S
    Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Recent progresses in CRISPR genome editing in plants].
    Li H; Xie K
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1700-1711. PubMed ID: 29082718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.