These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 33229367)

  • 1. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 2. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 5. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.
    Olson MG; Widner RE; Jorgenson LM; Lawrence A; Lagundzin D; Woods NT; Ouellette SP; Rucks EA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens.
    Jorgenson LM; Olson-Wood MG; Rucks EA
    Pathog Dis; 2021 Aug; 79(7):. PubMed ID: 34323972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion.
    Weber MM; Noriea NF; Bauler LD; Lam JL; Sager J; Wesolowski J; Paumet F; Hackstadt T
    J Bacteriol; 2016 Apr; 198(8):1347-55. PubMed ID: 26883826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation.
    Nguyen PH; Lutter EI; Hackstadt T
    PLoS Pathog; 2018 Mar; 14(3):e1006911. PubMed ID: 29543918
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sturd NA; Knight LA; Wood MG; Durham L; Ouellette SP; Rucks EA
    mSphere; 2024 Nov; 9(11):e0047324. PubMed ID: 39404459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.
    Moore ER; Ouellette SP
    Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion.
    Kabeiseman EJ; Cichos K; Hackstadt T; Lucas A; Moore ER
    Infect Immun; 2013 Sep; 81(9):3326-37. PubMed ID: 23798538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.
    Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.
    Mital J; Miller NJ; Fischer ER; Hackstadt T
    Cell Microbiol; 2010 Sep; 12(9):1235-49. PubMed ID: 20331642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229.
    Rzomp KA; Moorhead AR; Scidmore MA
    Infect Immun; 2006 Sep; 74(9):5362-73. PubMed ID: 16926431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The
    Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J
    Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079
    [No Abstract]   [Full Text] [Related]  

  • 18. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.
    Gauliard E; Ouellette SP; Rueden KJ; Ladant D
    Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.