BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 33229367)

  • 21. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity.
    Prusty BK; Chowdhury SR; Gulve N; Rudel T
    Front Cell Infect Microbiol; 2018; 8():183. PubMed ID: 29900129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.
    Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T
    PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion.
    Kabeiseman EJ; Cichos KH; Moore ER
    Front Cell Infect Microbiol; 2014; 4():129. PubMed ID: 25309881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Inactivation of
    Shaw JH; Key CE; Snider TA; Sah P; Shaw EI; Fisher DJ; Lutter EI
    Front Cell Infect Microbiol; 2018; 8():415. PubMed ID: 30555802
    [No Abstract]   [Full Text] [Related]  

  • 28. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking.
    Richards TS; Knowlton AE; Grieshaber SS
    BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection.
    Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM
    Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions.
    Ende R; Derré I
    Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA.
    Cingolani G; McCauley M; Lobley A; Bryer AJ; Wesolowski J; Greco DL; Lokareddy RK; Ronzone E; Perilla JR; Paumet F
    Nat Commun; 2019 Jun; 10(1):2747. PubMed ID: 31227715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes.
    Delevoye C; Nilges M; Dautry-Varsat A; Subtil A
    J Biol Chem; 2004 Nov; 279(45):46896-906. PubMed ID: 15316015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.
    Pokrovskaya ID; Szwedo JW; Goodwin A; Lupashina TV; Nagarajan UM; Lupashin VV
    Cell Microbiol; 2012 May; 14(5):656-68. PubMed ID: 22233276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection.
    Mirrashidi KM; Elwell CA; Verschueren E; Johnson JR; Frando A; Von Dollen J; Rosenberg O; Gulbahce N; Jang G; Johnson T; Jäger S; Gopalakrishnan AM; Sherry J; Dunn JD; Olive A; Penn B; Shales M; Cox JS; Starnbach MN; Derre I; Valdivia R; Krogan NJ; Engel J
    Cell Host Microbe; 2015 Jul; 18(1):109-21. PubMed ID: 26118995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA.
    Fields KA; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins.
    Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM
    Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.