BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33229441)

  • 1. Multibatch Cytometry Data Integration for Optimal Immunophenotyping.
    Ogishi M; Yang R; Gruber C; Zhang P; Pelham SJ; Spaan AN; Rosain J; Chbihi M; Han JE; Rao VK; Kainulainen L; Bustamante J; Boisson B; Bogunovic D; Boisson-Dupuis S; Casanova JL
    J Immunol; 2021 Jan; 206(1):206-213. PubMed ID: 33229441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre.
    Ashhurst TM; Marsh-Wakefield F; Putri GH; Spiteri AG; Shinko D; Read MN; Smith AL; King NJC
    Cytometry A; 2022 Mar; 101(3):237-253. PubMed ID: 33840138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets.
    Trussart M; Teh CE; Tan T; Leong L; Gray DH; Speed TP
    Elife; 2020 Sep; 9():. PubMed ID: 32894218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput automated analysis of big flow cytometry data.
    Rahim A; Meskas J; Drissler S; Yue A; Lorenc A; Laing A; Saran N; White J; Abeler-Dörner L; Hayday A; Brinkman RR
    Methods; 2018 Feb; 134-135():164-176. PubMed ID: 29287915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow Plex-A tool for unbiased comprehensive flow cytometry data analysis.
    Nowatzky J; Resnick E; Manasson J; Stagnar C; Al-Obeidi AF; Manches O
    Immun Inflamm Dis; 2019 Sep; 7(3):105-111. PubMed ID: 31016894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Mass Cytometry Staining for Immunophenotyping Clinical Samples.
    Thrash EM; Kleinsteuber K; Hathaway ES; Nazzaro M; Haas E; Hodi FS; Severgnini M
    STAR Protoc; 2020 Sep; 1(2):100055. PubMed ID: 33111099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive SWIFT cluster templates enhance detection of aging changes.
    Rebhahn JA; Roumanes DR; Qi Y; Khan A; Thakar J; Rosenberg A; Lee FE; Quataert SA; Sharma G; Mosmann TR
    Cytometry A; 2016 Jan; 89(1):59-70. PubMed ID: 26441030
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Opzoomer JW; Timms JA; Blighe K; Mourikis TP; Chapuis N; Bekoe R; Kareemaghay S; Nocerino P; Apollonio B; Ramsay AG; Tavassoli M; Harrison C; Ciccarelli F; Parker P; Fontenay M; Barber PR; Arnold JN; Kordasti S
    Elife; 2021 Apr; 10():. PubMed ID: 33929322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies.
    Pedersen CB; Dam SH; Barnkob MB; Leipold MD; Purroy N; Rassenti LZ; Kipps TJ; Nguyen J; Lederer JA; Gohil SH; Wu CJ; Olsen LR
    Nat Commun; 2022 Mar; 13(1):1698. PubMed ID: 35361793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CytoPy: An autonomous cytometry analysis framework.
    Burton RJ; Ahmed R; Cuff SM; Baker S; Artemiou A; Eberl M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009071. PubMed ID: 34101722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penalized Supervised Star Plots: Example Application in Influenza-Specific CD4+ T Cells.
    Holmes TH; Subrahmanyam PB; Wang W; Maecker HT
    Viral Immunol; 2019 Mar; 32(2):102-109. PubMed ID: 30698511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-parametric cytometry from a complex cellular sample: Improvements and limits of manual versus computational-based interactive analyses.
    Gondois-Rey F; Granjeaud S; Rouillier P; Rioualen C; Bidaut G; Olive D
    Cytometry A; 2016 May; 89(5):480-90. PubMed ID: 27059253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry.
    Leelatian N; Diggins KE; Irish JM
    Methods Mol Biol; 2015; 1346():99-113. PubMed ID: 26542718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery.
    Baumgaertner P; Sankar M; Herrera F; Benedetti F; Barras D; Thierry AC; Dangaj D; Kandalaft LE; Coukos G; Xenarios I; Guex N; Harari A
    Front Immunol; 2021; 12():633910. PubMed ID: 33995353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunophenotyping of Human Peripheral Blood Mononuclear Cells by Mass Cytometry.
    Heck S; Bishop CJ; Ellis RJ
    Methods Mol Biol; 2019; 1979():285-303. PubMed ID: 31028645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-platform immunophenotyping of human peripheral blood mononuclear cells with four high-dimensional flow cytometry panels.
    Heubeck A; Savage A; Henderson K; Roll C; Hernandez V; Torgerson T; Bumol T; Reading J
    Cytometry A; 2023 Jun; 103(6):500-517. PubMed ID: 36571245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Mass Cytometry Signal Background to Enable Optimal Core Panel Customization and Signal Threshold Gating.
    Au-Yeung A; Takahashi C; Mathews WR; O'Gorman WE
    Methods Mol Biol; 2019; 1989():35-45. PubMed ID: 31077097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OMIP-042: 21-color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood.
    Staser KW; Eades W; Choi J; Karpova D; DiPersio JF
    Cytometry A; 2018 Feb; 93(2):186-189. PubMed ID: 29288606
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiparameter analysis of stimulated human peripheral blood mononuclear cells: A comparison of mass and fluorescence cytometry.
    Nicholas KJ; Greenplate AR; Flaherty DK; Matlock BK; Juan JS; Smith RM; Irish JM; Kalams SA
    Cytometry A; 2016 Mar; 89(3):271-80. PubMed ID: 26599989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.