These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33229546)

  • 1. Structure-function subsystem models of female and male forebrain networks integrating cognition, affect, behavior, and bodily functions.
    Swanson LW; Hahn JD; Sporns O
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31470-31481. PubMed ID: 33229546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function subsystem model and computational lesions of the central nervous system's rostral sector (forebrain and midbrain).
    Swanson LW; Hahn JD; Sporns O
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2210931119. PubMed ID: 36322764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsystem organization of axonal connections within and between the right and left cerebral cortex and cerebral nuclei (endbrain).
    Swanson LW; Hahn JD; Jeub LGS; Fortunato S; Sporns O
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6910-E6919. PubMed ID: 29967160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The network architecture of rat intrinsic interbrain (diencephalic) macroconnections.
    Swanson LW; Sporns O; Hahn JD
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26991-27000. PubMed ID: 31806763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsystem macroarchitecture of the intrinsic midbrain neural network and its tectal and tegmental subnetworks.
    Swanson LW; Hahn JD; Sporns O
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33980715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The network organization of rat intrathalamic macroconnections and a comparison with other forebrain divisions.
    Swanson LW; Sporns O; Hahn JD
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13661-13669. PubMed ID: 31213544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of systems and networks of the limbic forebrain/limbic midbrain.
    Morgane PJ; Galler JR; Mokler DJ
    Prog Neurobiol; 2005 Feb; 75(2):143-60. PubMed ID: 15784304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscale intrinsic network architecture of the hypothalamus.
    Hahn JD; Sporns O; Watts AG; Swanson LW
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):8018-8027. PubMed ID: 30923123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior.
    Pati S; Saba K; Salvi SS; Tiwari P; Chaudhari PR; Verma V; Mukhopadhyay S; Kapri D; Suryavanshi S; Clement JP; Patel AB; Vaidya VA
    Elife; 2020 Sep; 9():. PubMed ID: 32955432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary Disruption of the Memory-Related Subsystems of the Default Mode Network in Alzheimer's Disease: Resting-State Functional Connectivity MRI Study.
    Qi H; Liu H; Hu H; He H; Zhao X
    Front Aging Neurosci; 2018; 10():344. PubMed ID: 30429784
    [No Abstract]   [Full Text] [Related]  

  • 11. A dual-subsystem model of the brain's default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval.
    Kim H
    Neuroimage; 2012 Jul; 61(4):966-77. PubMed ID: 22446489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat.
    Ma S; Bonaventure P; Ferraro T; Shen PJ; Burazin TC; Bathgate RA; Liu C; Tregear GW; Sutton SW; Gundlach AL
    Neuroscience; 2007 Jan; 144(1):165-90. PubMed ID: 17071007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning.
    Hobson JA; Pace-Schott EF
    Nat Rev Neurosci; 2002 Sep; 3(9):679-93. PubMed ID: 12209117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunolesion by 192IgG-saporin of rat basal forebrain cholinergic system: a useful tool to produce cortical cholinergic dysfunction.
    Schliebs R; Rossner S; Bigl V
    Prog Brain Res; 1996; 109():253-64. PubMed ID: 9009714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of the intrinsic functional connectivity of default network subsystems from age 3 to 5.
    Xiao Y; Zhai H; Friederici AD; Jia F
    Brain Imaging Behav; 2016 Mar; 10(1):50-9. PubMed ID: 25759285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social experience organizes parallel networks in sensory and limbic forebrain.
    Yang EJ; Wilczynski W
    Dev Neurobiol; 2007 Feb; 67(3):285-303. PubMed ID: 17443788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic changes in the default mode network in hypertensive patients with cognitive impairment.
    Gu Y; Liu R; Qin R; Chen X; Zou J; Jiang Y; Ye Q; Zhang B; Bai F; Xu Y
    Hypertens Res; 2019 Apr; 42(4):530-540. PubMed ID: 30573810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.
    Simmons JM; Ackermann RF; Gallistel CR
    J Neurosci; 1998 Oct; 18(20):8515-33. PubMed ID: 9763494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organizing principles for the cerebral cortex network of commissural and association connections.
    Swanson LW; Hahn JD; Sporns O
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9692-E9701. PubMed ID: 29078382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study.
    Chen X; Chen NX; Shen YQ; Li HX; Li L; Lu B; Zhu ZC; Fan Z; Yan CG
    Neuroimage; 2020 Nov; 221():117185. PubMed ID: 32711069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.