These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33229549)

  • 1. Controversial stimuli: Pitting neural networks against each other as models of human cognition.
    Golan T; Raju PC; Kriegeskorte N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29330-29337. PubMed ID: 33229549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Neural Networks for Modeling Visual Perceptual Learning.
    Wenliang LK; Seitz AR
    J Neurosci; 2018 Jul; 38(27):6028-6044. PubMed ID: 29793979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive deep Q-learning strategy for handwritten digit recognition.
    Qiao J; Wang G; Li W; Chen M
    Neural Netw; 2018 Nov; 107():61-71. PubMed ID: 29735249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO).
    Karabayir I; Akbilgic O; Tas N
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):685-694. PubMed ID: 32481228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing faces from fMRI patterns using deep generative neural networks.
    VanRullen R; Reddy L
    Commun Biol; 2019; 2():193. PubMed ID: 31123717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adversarial Margin Maximization Networks.
    Yan Z; Guo Y; Zhang C
    IEEE Trans Pattern Anal Mach Intell; 2021 Apr; 43(4):1129-1139. PubMed ID: 31634825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations.
    Peterson JC; Abbott JT; Griffiths TL
    Cogn Sci; 2018 Nov; 42(8):2648-2669. PubMed ID: 30178468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences.
    Oregi I; Del Ser J; PĂ©rez A; Lozano JA
    Neural Netw; 2020 Aug; 128():61-72. PubMed ID: 32442627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of efficient features for image recognition by neural networks.
    Goltsev A; Gritsenko V
    Neural Netw; 2012 Apr; 28():15-23. PubMed ID: 22391231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern Recognition of Spiking Neural Networks Based on Visual Mechanism and Supervised Synaptic Learning.
    Li X; Yi H; Luo S
    Neural Plast; 2020; 2020():8851351. PubMed ID: 33193755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognizing Object by Components With Human Prior Knowledge Enhances Adversarial Robustness of Deep Neural Networks.
    Li X; Wang Z; Zhang B; Sun F; Hu X
    IEEE Trans Pattern Anal Mach Intell; 2023 Jul; 45(7):8861-8873. PubMed ID: 37021866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.