These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33229585)

  • 1.
    Ke HM; Lee HH; Lin CI; Liu YC; Lu MR; Hsieh JA; Chang CC; Wu PH; Lu MJ; Li JY; Shang G; Lu RJ; Nagy LG; Chen PY; Kao HW; Tsai IJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31267-31277. PubMed ID: 33229585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trans-3-hydroxyhispidin is not an actual bioluminescence substrate in pileus gills of the luminous fungus Mycena chlorophos.
    Teranishi K
    Biochem Biophys Res Commun; 2018 Sep; 504(1):190-195. PubMed ID: 30172376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four new bioluminescent taxa of Mycena sect. Calodontes from Peninsular Malaysia.
    Chew AL; Tan YS; Desjardin DE; Musa MY; Sabaratnam V
    Mycologia; 2014; 106(5):976-88. PubMed ID: 24891424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination of NADHP and hispidin is not essential for bioluminescence in luminous fungal living gills of Mycena chlorophos.
    Teranishi K
    Luminescence; 2017 Aug; 32(5):866-872. PubMed ID: 28058809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence and chemiluminescence abilities of trans-3-hydroxyhispidin on the luminous fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2018 Nov; 33(7):1235-1242. PubMed ID: 30109785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations.
    Harder CB; Miyauchi S; Virágh M; Kuo A; Thoen E; Andreopoulos B; Lu D; Skrede I; Drula E; Henrissat B; Morin E; Kohler A; Barry K; LaButti K; Salamov A; Lipzen A; Merényi Z; Hegedüs B; Baldrian P; Stursova M; Weitz H; Taylor A; Koriabine M; Savage E; Grigoriev IV; Nagy LG; Martin F; Kauserud H
    Cell Genom; 2024 Jul; 4(7):100586. PubMed ID: 38942024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New species and records of bioluminescent Mycena from Mexico.
    Cortés-Pérez A; Desjardin DE; Perry BA; Ramírez-Cruz V; Ramírez-Guillén F; Villalobos-Arámbula AR; Rockefeller A
    Mycologia; 2019; 111(2):319-338. PubMed ID: 30908110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taxonomic and phylogenetic re-evaluation of Mycena illuminans.
    Chew AL; Tan YS; Desjardin DE; Musa MY; Sabaratnam V
    Mycologia; 2013; 105(5):1325-35. PubMed ID: 23709573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes).
    Földi C; Merényi Z; Balázs B; Csernetics Á; Miklovics N; Wu H; Hegedüs B; Virágh M; Hou Z; Liu X-B; Galgóczy L; Nagy LG
    mSystems; 2024 Mar; 9(3):e0120823. PubMed ID: 38334416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body.
    Oba Y; Suzuki Y; Martins GNR; Carvalho RP; Pereira TA; Waldenmaier HE; Kanie S; Naito M; Oliveira AG; Dörr FA; Pinto E; Yampolsky IV; Stevani CV
    Photochem Photobiol Sci; 2017 Sep; 16(9):1435-1440. PubMed ID: 28766678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New luminescent mycenoid fungi (Basidiomycota, Agaricales) from São Paulo State, Brazil.
    Desjardin DE; Perry BA; Stevani CV
    Mycologia; 2016; 108(6):1165-1174. PubMed ID: 27621286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis.
    Liu XB; Xia EH; Li M; Cui YY; Wang PM; Zhang JX; Xie BG; Xu JP; Yan JJ; Li J; Nagy LG; Yang ZL
    PLoS One; 2020; 15(10):e0239890. PubMed ID: 33064719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae.
    Nagy LG; Walther G; Házi J; Vágvölgyi C; Papp T
    Syst Biol; 2011 May; 60(3):303-17. PubMed ID: 21368323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi.
    Kosentka P; Sprague SL; Ryberg M; Gartz J; May AL; Campagna SR; Matheny PB
    PLoS One; 2013; 8(5):e64646. PubMed ID: 23717644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.
    Almási É; Sahu N; Krizsán K; Bálint B; Kovács GM; Kiss B; Cseklye J; Drula E; Henrissat B; Nagy I; Chovatia M; Adam C; LaButti K; Lipzen A; Riley R; Grigoriev IV; Nagy LG
    New Phytol; 2019 Oct; 224(2):902-915. PubMed ID: 31257601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genome and microbiome of a dikaryotic fungus (Inocybe terrigena, Inocybaceae) revealed by metagenomics.
    Bahram M; Vanderpool D; Pent M; Hiltunen M; Ryberg M
    Environ Microbiol Rep; 2018 Apr; 10(2):155-166. PubMed ID: 29327481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megaphylogeny resolves global patterns of mushroom evolution.
    Varga T; Krizsán K; Földi C; Dima B; Sánchez-García M; Sánchez-Ramírez S; Szöllősi GJ; Szarkándi JG; Papp V; Albert L; Andreopoulos W; Angelini C; Antonín V; Barry KW; Bougher NL; Buchanan P; Buyck B; Bense V; Catcheside P; Chovatia M; Cooper J; Dämon W; Desjardin D; Finy P; Geml J; Haridas S; Hughes K; Justo A; Karasiński D; Kautmanova I; Kiss B; Kocsubé S; Kotiranta H; LaButti KM; Lechner BE; Liimatainen K; Lipzen A; Lukács Z; Mihaltcheva S; Morgado LN; Niskanen T; Noordeloos ME; Ohm RA; Ortiz-Santana B; Ovrebo C; Rácz N; Riley R; Savchenko A; Shiryaev A; Soop K; Spirin V; Szebenyi C; Tomšovský M; Tulloss RE; Uehling J; Grigoriev IV; Vágvölgyi C; Papp T; Martin FM; Miettinen O; Hibbett DS; Nagy LG
    Nat Ecol Evol; 2019 Apr; 3(4):668-678. PubMed ID: 30886374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta.
    Peters S; Spiteller P
    J Nat Prod; 2007 Aug; 70(8):1274-7. PubMed ID: 17658856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi.
    Krizsán K; Almási É; Merényi Z; Sahu N; Virágh M; Kószó T; Mondo S; Kiss B; Bálint B; Kües U; Barry K; Cseklye J; Hegedüs B; Henrissat B; Johnson J; Lipzen A; Ohm RA; Nagy I; Pangilinan J; Yan J; Xiong Y; Grigoriev IV; Hibbett DS; Nagy LG
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7409-7418. PubMed ID: 30902897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pelianthinarubins A and B, Red Pyrroloquinoline Alkaloids from the Fruiting Bodies of the Mushroom Mycena pelianthina.
    Pulte A; Wagner S; Kogler H; Spiteller P
    J Nat Prod; 2016 Apr; 79(4):873-8. PubMed ID: 27002340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.