These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33229587)

  • 1. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control over overall shape and size in de novo designed proteins.
    Lin YR; Koga N; Tatsumi-Koga R; Liu G; Clouser AF; Montelione GT; Baker D
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5478-85. PubMed ID: 26396255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles for designing ideal protein structures.
    Koga N; Tatsumi-Koga R; Liu G; Xiao R; Acton TB; Montelione GT; Baker D
    Nature; 2012 Nov; 491(7423):222-7. PubMed ID: 23135467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic surface residues can stabilize a protein through improved water-protein interactions.
    Islam MM; Kobayashi K; Kidokoro SI; Kuroda Y
    FEBS J; 2019 Oct; 286(20):4122-4134. PubMed ID: 31175706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of amino acids involved in protein structural uniqueness: implication for de novo protein design.
    Isogai Y; Ota M; Ishii A; Ishida M; Nishikawa K
    Protein Eng; 2002 Jul; 15(7):555-60. PubMed ID: 12200537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of local and nonlocal interactions in folding and misfolding of globular proteins.
    Kumar A; Baruah A; Biswas P
    J Chem Phys; 2017 Feb; 146(6):065102. PubMed ID: 28201889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of backbone strain in de novo design of complex α/β protein structures.
    Koga N; Koga R; Liu G; Castellanos J; Montelione GT; Baker D
    Nat Commun; 2021 Jun; 12(1):3921. PubMed ID: 34168113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native protein sequences are designed to destabilize folding intermediates.
    Isogai Y
    Biochemistry; 2006 Feb; 45(8):2488-92. PubMed ID: 16489741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.
    Zhou X; Xiong P; Wang M; Ma R; Zhang J; Chen Q; Liu H
    J Struct Biol; 2016 Dec; 196(3):350-357. PubMed ID: 27522946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of the residues from the main hydrophobic core of ribonuclease A to its pressure-folding transition state.
    Font J; Benito A; Lange R; Ribó M; Vilanova M
    Protein Sci; 2006 May; 15(5):1000-9. PubMed ID: 16597833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New strategies in protein design.
    Desjarlais JR; Handel TM
    Curr Opin Biotechnol; 1995 Aug; 6(4):460-6. PubMed ID: 7579657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring local and non-local interactions for protein stability by structural motif engineering.
    Niggemann M; Steipe B
    J Mol Biol; 2000 Feb; 296(1):181-95. PubMed ID: 10656826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Favourable native-like helical local interactions can accelerate protein folding.
    Viguera AR; Villegas V; Avilés FX; Serrano L
    Fold Des; 1997; 2(1):23-33. PubMed ID: 9080196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability.
    Lu SM; Hodges RS
    Protein Sci; 2004 Mar; 13(3):714-26. PubMed ID: 14978309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.