These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 33229675)
1. Corneal curvature, asphericity, and aberrations after transepithelial photorefractive keratectomy and femtosecond laser-assisted Zhang YL; Xu XH; Cao LJ; Liu L Indian J Ophthalmol; 2020 Dec; 68(12):2945-2949. PubMed ID: 33229675 [TBL] [Abstract][Full Text] [Related]
2. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. Zhang J; Feng Q; Ding W; Peng Y; Long K BMC Ophthalmol; 2020 Jun; 20(1):243. PubMed ID: 32560634 [TBL] [Abstract][Full Text] [Related]
3. Corneal Asphericity and Higher-Order Aberrations after FS-LASIK and Trans-PRK for Myopia. Wu Y; Wang S; Wang G; Zhao S; Wei R; Huang Y J Ophthalmol; 2021; 2021():3765046. PubMed ID: 34912576 [TBL] [Abstract][Full Text] [Related]
4. Regional Changes in Posterior Corneal Surface During a 6-Month Follow-up Period After tPRK, FS-LASIK, and SMILE. Wu J; Wu J; Wu S; Zhu D; Miao Y; Huang C; Akiti S; Vinciguerra R; Zhang X; Zhang P; Zheng X; Wang J; Wang Q; Chen S; Li Y; Ye Y; Bao F; Elsheikh A J Refract Surg; 2022 Nov; 38(11):708-715. PubMed ID: 36367258 [TBL] [Abstract][Full Text] [Related]
5. Changes in asphericity of anterior and posterior corneal surfaces for mild-moderate and high myopia after topography-guided FS-LASIK. Wu Y; Sun S; Liu Z; Wang S; Wang G; Zhao S; Wei R; Huang Y Int Ophthalmol; 2022 Nov; 42(11):3555-3565. PubMed ID: 35635596 [TBL] [Abstract][Full Text] [Related]
6. Clinical outcomes of single-step transepithelial photorefractive keratectomy and off-flap epipolis-laser in situ keratomileusis in moderate to high myopia: 12-month follow-up. Zhang Y; Li T; Li Z; Dai M; Wang Q; Xu C BMC Ophthalmol; 2022 May; 22(1):234. PubMed ID: 35606707 [TBL] [Abstract][Full Text] [Related]
7. Changes in Posterior Cornea and Posterior-To-Anterior Curvature Radii Ratio 1 Year After LASIK, PRK, and SMILE Treatment of Myopia. Moshirfar M; Cha DS; Santos JM; Herron MS; Hoopes PC Cornea; 2024 Aug; 43(8):950-954. PubMed ID: 38561842 [TBL] [Abstract][Full Text] [Related]
8. To Investigate the Changes in Corneal Curvature and Its Correlation with Corneal Epithelial Remodeling After Trans-PRK and FS-LASIK. Yang F; Yang Z; Zhao S; Huang Y Curr Eye Res; 2024 Oct; 49(10):1061-1067. PubMed ID: 38867491 [TBL] [Abstract][Full Text] [Related]
9. The effect of different optical zone diameters on the results of high-order aberrations in femto-laser-assisted in situ keratomileusis. Özülken K; Kaderli A Eur J Ophthalmol; 2020 Nov; 30(6):1272-1277. PubMed ID: 31353955 [TBL] [Abstract][Full Text] [Related]
10. [Changes in the wavefront and peripheral defocus profile after excimer laser and orthokeratology corneal reshaping in myopia]. Khanjian AT; Khodzhabekyan NV; Tarutta EP; Harutyunyan SG; Milash SV Vestn Oftalmol; 2023; 139(6):87-92. PubMed ID: 38235634 [TBL] [Abstract][Full Text] [Related]
11. Effect of preoperative pupil offset on corneal higher-order aberrations after femtosecond laser-assisted in situ keratomileusis. Liu Z; Zhao Y; Sun S; Wu Y; Wang G; Zhao S; Huang Y BMC Ophthalmol; 2023 Jun; 23(1):247. PubMed ID: 37264322 [TBL] [Abstract][Full Text] [Related]
12. Aberration compensation between anterior and posterior corneal surfaces after Small incision lenticule extraction and Femtosecond laser-assisted laser in-situ keratomileusis. Li X; Wang Y; Dou R Ophthalmic Physiol Opt; 2015 Sep; 35(5):540-51. PubMed ID: 26087672 [TBL] [Abstract][Full Text] [Related]
13. Predictors affecting myopic regression in - 6.0D to - 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted. Zhou J; Gu W; Li S; Wu L; Gao Y; Guo X Int Ophthalmol; 2020 Jan; 40(1):213-225. PubMed ID: 31571091 [TBL] [Abstract][Full Text] [Related]
14. Six modes of corneal topography for evaluation of ablation zones after small-incision lenticule extraction and femtosecond laser-assisted in situ keratomileusis. Li H; Peng Y; Chen M; Tian L; Li D; Zhang F Graefes Arch Clin Exp Ophthalmol; 2020 Jul; 258(7):1555-1563. PubMed ID: 32328759 [TBL] [Abstract][Full Text] [Related]
15. Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Oshika T; Klyce SD; Applegate RA; Howland HC; El Danasoury MA Am J Ophthalmol; 1999 Jan; 127(1):1-7. PubMed ID: 9932992 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Higher-Order Aberrations After Single-Step Transepithelial and Conventional Alcohol-Assisted Photorefractive Keratectomy. Özülken K; İlhan Ç Turk J Ophthalmol; 2020 Jun; 50(3):127-132. PubMed ID: 32630998 [TBL] [Abstract][Full Text] [Related]
17. Corneal Epithelial Remodeling in a 6-Month Follow-up Period in Myopic Corneal Refractive Surgeries. Zhu M; Xin Y; Vinciguerra R; Wang Z; Warsame AM; Wang C; Zhu D; Qu Z; Wang P; Zheng X; Wang J; Wang Q; Ye Y; Chen S; Bao F; Elsheikh A J Refract Surg; 2023 Mar; 39(3):187-196. PubMed ID: 36892243 [TBL] [Abstract][Full Text] [Related]
18. High-order aberration changes after femtosecond LASIK surgery in patients with high myopia. Feng Z; Wang Q; Du C; Yang F; Li X Ann Palliat Med; 2021 Jul; 10(7):7689-7696. PubMed ID: 34353057 [TBL] [Abstract][Full Text] [Related]
19. Femtosecond laser assisted in situ keratomileusis (FS-LASIK) yields better results than transepithelial photorefractive keratectomy (Trans-PRK) for correction of low to moderate grade myopia. Gershoni A; Reitblat O; Mimouni M; Livny E; Nahum Y; Bahar I Eur J Ophthalmol; 2021 Nov; 31(6):2914-2922. PubMed ID: 33307790 [TBL] [Abstract][Full Text] [Related]
20. Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology. Hersh PS; Fry K; Blaker JW J Cataract Refract Surg; 2003 Nov; 29(11):2096-104. PubMed ID: 14670417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]