BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33230114)

  • 1. STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells.
    Jin L; Chen Y; Crossman DK; Datta A; Vu T; Mobley JA; Basu MK; Scarduzio M; Wang H; Chang C; Datta PK
    Nat Commun; 2020 Nov; 11(1):5941. PubMed ID: 33230114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis.
    Jin L; Chang C; Pawlik KM; Datta A; Johnson LM; Vu T; Napoli JL; Datta PK
    Stem Cells; 2018 Sep; 36(9):1368-1379. PubMed ID: 29781215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rbm24 Regulates Alternative Splicing Switch in Embryonic Stem Cell Cardiac Lineage Differentiation.
    Zhang T; Lin Y; Liu J; Zhang ZG; Fu W; Guo LY; Pan L; Kong X; Zhang MK; Lu YH; Huang ZR; Xie Q; Li WH; Xu XQ
    Stem Cells; 2016 Jul; 34(7):1776-89. PubMed ID: 26990106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development.
    Rodor J; FitzPatrick DR; Eyras E; Cáceres JF
    RNA Biol; 2017 Jan; 14(1):45-57. PubMed ID: 27763814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells.
    Stryjewska A; Dries R; Pieters T; Verstappen G; Conidi A; Coddens K; Francis A; Umans L; van IJcken WF; Berx G; van Grunsven LA; Grosveld FG; Goossens S; Haigh JJ; Huylebroeck D
    Stem Cells; 2017 Mar; 35(3):611-625. PubMed ID: 27739137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RuvB-Like Protein 2 (Ruvbl2) Has a Role in Directing the Neuroectodermal Differentiation of Mouse Embryonic Stem Cells.
    Hong S; Jo J; Kim HJ; Lee JE; Shin DH; Lee SG; Baek A; Shim SH; Lee DR
    Stem Cells Dev; 2016 Sep; 25(18):1376-85. PubMed ID: 27469992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9.
    Brosi R; Gröning K; Behrens SE; Lührmann R; Krämer A
    Science; 1993 Oct; 262(5130):102-5. PubMed ID: 8211112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.
    Hayakawa-Yano Y; Suyama S; Nogami M; Yugami M; Koya I; Furukawa T; Zhou L; Abe M; Sakimura K; Takebayashi H; Nakanishi A; Okano H; Yano M
    Genes Dev; 2017 Sep; 31(18):1910-1925. PubMed ID: 29021239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome.
    Meister G; Hannus S; Plöttner O; Baars T; Hartmann E; Fakan S; Laggerbauer B; Fischer U
    EMBO J; 2001 May; 20(9):2304-14. PubMed ID: 11331595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the 60-kDa protein of 17S U2 small nuclear ribonucleoprotein is immunologically and functionally related to the yeast PRP9 splicing factor and is required for the efficient formation of prespliceosomes.
    Behrens SE; Galisson F; Legrain P; Lührmann R
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8229-33. PubMed ID: 8367487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.
    Maatz H; Jens M; Liss M; Schafer S; Heinig M; Kirchner M; Adami E; Rintisch C; Dauksaite V; Radke MH; Selbach M; Barton PJ; Cook SA; Rajewsky N; Gotthardt M; Landthaler M; Hubner N
    J Clin Invest; 2014 Aug; 124(8):3419-30. PubMed ID: 24960161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis.
    Sapra AK; Khandelia P; Vijayraghavan U
    Biochem J; 2008 Dec; 416(3):365-74. PubMed ID: 18691155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prespliceosome structure provides insights into spliceosome assembly and regulation.
    Plaschka C; Lin PC; Charenton C; Nagai K
    Nature; 2018 Jul; 559(7714):419-422. PubMed ID: 29995849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. U1-independent pre-mRNA splicing contributes to the regulation of alternative splicing.
    Fukumura K; Taniguchi I; Sakamoto H; Ohno M; Inoue K
    Nucleic Acids Res; 2009 Apr; 37(6):1907-14. PubMed ID: 19190090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins.
    Crisci A; Raleff F; Bagdiul I; Raabe M; Urlaub H; Rain JC; Krämer A
    Nucleic Acids Res; 2015 Dec; 43(21):10456-73. PubMed ID: 26420826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RBM25 is a global splicing factor promoting inclusion of alternatively spliced exons and is itself regulated by lysine mono-methylation.
    Carlson SM; Soulette CM; Yang Z; Elias JE; Brooks AN; Gozani O
    J Biol Chem; 2017 Aug; 292(32):13381-13390. PubMed ID: 28655759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation.
    Nesic D; Krämer A
    Mol Cell Biol; 2001 Oct; 21(19):6406-17. PubMed ID: 11533230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly.
    Sharma S; Wongpalee SP; Vashisht A; Wohlschlegel JA; Black DL
    Genes Dev; 2014 Nov; 28(22):2518-31. PubMed ID: 25403181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes.
    Aich M; Ansari AH; Ding L; Iesmantavicius V; Paul D; Choudhary C; Maiti S; Buchholz F; Chakraborty D
    Cell Rep; 2023 Oct; 42(10):113177. PubMed ID: 37751355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MicroRNA-92a/Sp1/MyoD Axis Regulates Hypoxic Stimulation of Myogenic Lineage Differentiation in Mouse Embryonic Stem Cells.
    Lee SY; Yang J; Park JH; Shin HK; Kim WJ; Kim SY; Lee EJ; Hwang I; Lee CS; Lee J; Kim HS
    Mol Ther; 2020 Jan; 28(1):142-156. PubMed ID: 31606324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.